
ReadGuard: Integrated SSD Management for Priority-Aware Read

Performance Diferentiation

MYOUNGJUN CHUN, Seoul National University, Seoul, Korea (the Republic of)
MYUNGSUK KIM, Kyungpook National University, Daegu, Korea (the Republic of)

DUSOL LEE, Seoul National University, Seoul, Korea (the Republic of)
JISUNG PARK, POSTECH, Pohang, Korea (the Republic of)
JIHONG KIM, Seoul National University, Seoul, Korea (the Republic of)

When multiple apps with diferent I/O priorities share a high-performance SSD, it is important to diferentiate the I/O QoS

level based on the I/O priority of each app. In this paper, we study how a modern lash-based SSD should be designed to

support priority-aware read performance diferentiation. From an in-depth evaluation study using 3D TLC SSDs, we observed

that existing FTLs have several weaknesses that need to be improved for better read performance diferentiation. In order to

overcome the existing FTL weaknesses, we propose ReadGuard, a novel priority-aware SSD management technique that

enables an FTL to manage its blocks in a fully read-latency-aware fashion. ReadGuard leverages a new read-latency-centric

block quality marker that can accurately distinguish the read latency of a block and ensures that higher-quality blocks are

used for higher-priority apps. ReadGuard extends an existing suspend/resume technique to handle collisions among reads.

Our experimental results show that a ReadGuard-enabled SSD is efective in supporting diferentiated read performance in

modern 3D lash SSDs.

CCS Concepts: · Hardware→ External storage; · Information systems→ Flash memory; Storage management.

Additional Key Words and Phrases: SSD, lash memory, read latency optimization, I/O priority

1 Introduction

Modern solid-state drives (SSDs) play a crucial role in serving apps that directly interact with users in large-scale

data centers. Such latency-sensitive apps (e.g., web services [1], online transaction processing [2], and AI/ML

inference apps [3, 4]) are commonly required to satisfy strict service-level agreements (SLAs). For instance, an

online transaction processing app should process user requests and return responses with sub-second latency [5].

To meet SLA requirements, an ideal approach might be to develop a dedicated storage system for each app

so that there is no interference among diferent apps. However, this approach is impractical for data centers

due to its low cost-performance ratio, ineicient energy use, and extensive space needs [6, 7]. As a practical

alternative, a data center employs shared storage systems that are shared among latency-sensitive apps as well as

throughput-oriented apps (e.g., graph processing, data analysis, and backup tasks) that are less sensitive to I/O

latency.

When a latency-sensitive app and a throughput-oriented app run concurrently in a storage system, we would

desire the I/O latency of the latency-sensitive app to be shorter than that of the throughput-oriented app. To serve

latency-sensitive apps with shorter I/O latencies in a shared storage system, several studies [8ś14] have proposed

Authors’ Contact Information: Myoungjun Chun, Seoul National University, Seoul, Korea (the Republic of); e-mail: mjchun@davinci.snu.ac.kr;

Myungsuk Kim, Kyungpook National University, Daegu, Korea (the Republic of); e-mail: ms.kim@knu.ac.kr; Dusol Lee, Seoul National

University, Seoul, Korea (the Republic of); e-mail: dslee@davinci.snu.ac.kr; Jisung Park, POSTECH, Pohang, Korea (the Republic of); e-mail:

jisungpark@postech.ac.kr; Jihong Kim, Seoul National University, Seoul, Korea (the Republic of); e-mail: jihong@davinci.snu.ac.kr.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that

copies are not made or distributed for proit or commercial advantage and that copies bear this notice and the full citation on the irst page.

Copyrights for third-party components of this work must be honored. For all other uses, contact the owner/author(s).

© 2024 Copyright held by the owner/author(s).

ACM 1553-3093/2024/7-ART

https://doi.org/10.1145/3676884

ACM Trans. Storage

HTTPS://ORCID.ORG/0000-0002-8188-4324
HTTPS://ORCID.ORG/0000-0002-8667-3198
HTTPS://ORCID.ORG/0000-0001-7729-296X
HTTPS://ORCID.ORG/0000-0002-1826-9003
HTTPS://ORCID.ORG/0000-0002-7977-9883
https://orcid.org/0000-0002-8188-4324
https://orcid.org/0000-0002-8667-3198
https://orcid.org/0000-0001-7729-296X
https://orcid.org/0000-0002-1826-9003
https://orcid.org/0000-0002-7977-9883
https://doi.org/10.1145/3676884
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3676884&domain=pdf&date_stamp=2024-07-25

2 • M. Chun et al.

solutions that diferentiate I/O latencies among multiple apps based on their priorities. FlashShare [8], for example,

successfully reduced the average and p99-percentile read latency of a latency-sensitive app by enhancing the

kernel-level I/O stack based on I/O priority. To address SSD-level read latency, which can constitute up to 91%

of total I/O latency in a modern I/O stack with an NVMe interface [15], some works [11ś14] have proposed

SSD-level scheduling techniques that reorder read requests based on their I/O priority within device-level queues.

In this paper, we argue that (1) existing priority-aware I/O management techniques at various I/O stack layers

are not suicient to diferentiate SSD-level latencies among diferent apps in modern 3D lash SSDs, and (2)

the I/O priority of an app should be carefully managed inside an SSD from the NAND block level to main FTL

modules for priority-aware I/O performance diferentiation. Since read latency is a crucial factor in determining

the perceived I/O performance for the majority of applications, this paper focuses on diferentiating read latency.

To understand how well a modern 3D lash SSD supports the read-latency diferentiation requirement, we

evaluated the read-latency (at the SSD level) distributions of apps using an NVMe SSD simulator with three

priority I/O queues. Our simulation environment supports an SSD-level priority-aware scheduling mechanism

proposed by previous studies [11ś14] (see Section 2.4 for more details on the priority-aware FTL). Figure 1 shows

the read-latency distributions of three apps, �ℎ��ℎ , ���� , and ���� , where the I/O priority of �ℎ��ℎ is the highest

while that of ���� is the lowest.1 Note that the read latency of Figure 1 represents the end-to-end read latency of

an SSD from the time an app enqueues a read request to a submission queue to the time when the read response

arrives at the host. As shown in Figure 1, the SSD did not adequately support read diferentiation. In all three

stages of the SSD lifetime, the average read latency of three apps was virtually indistinguishable regardless of the

I/O priority of an app.

To identify the root causes of poor read diferentiation over app priorities in our priority-aware SSD, we

performed a comprehensive study from a NAND lash memory to an FTL and identiied three main causes of

poor read diferentiation. First, the key modules of existing priority-aware FTLs (such as [11ś14]) work in a

read-latency-unaware fashion. For example, these FTLs assume that the read latency of lash blocks in an SSD

is equal. Therefore, when the read latency of lash blocks is signiicantly diferent (as observed in modern 3D

lash blocks), the existing priority-aware FTLs cannot properly support I/O requests with diferent priorities. For

example, in our benchmark evaluations, we observed frequent block-quality inversions among apps, allocating

blocks with shorter read latency to lower-priority apps. Second, conventional block quality measures (e.g.,

program/erase (P/E) cycles) are inadequate to diferentiate the read latency of modern 3D lash blocks with high

process variability. Since a large variation in the read latency of 3D lash blocks is directly related to the number

1See Section 3.2 for more details on the evaluated apps and SSD lifetime stages.

τhigh τmid τlow
τhigh τmid τlow τhigh τmid τlow

A
v

g
. r

e
a

d
 l

a
t.

 (
μs

) 104

103

102

101

100

Child stage Young stage Old stage

Fig. 1. Read-latency distributions among three apps.

ACM Trans. Storage

ReadGuard: Integrated SSD Management for Priority-Aware Read Performance Diferentiation • 3

of read-retry operations, a better block quality measure, which focuses on the read latency of lash blocks, is

needed so that the number of read-retry operations of a block can be accurately predicted. Third, the existing

priority-aware FTLs do not properly handle the conlict between two NAND read commands with diferent

priorities. Existing command schedulers preempt only ongoing writes and erases over reads, without considering

the case when a lower-priority read conlicts with a higher-priority read, which can cause a large delay for the

higher-priority read when the lower-priority read requires a long latency to complete.

Motivated by our indings from the evaluation study, we propose a new integrated priority-aware lash

management scheme, ReadGuard, which can better diferentiate read latency between apps with diferent

priority requirements. ReadGuard makes three key contributions. First, we propose a novel read-latency-centric

block quality marker that can accurately represent the (worst-case) read latency ����� of each block. By

estimating the read latency of a block, not the reliability of data stored in the block (as in common block quality

measures such as P/E cycles), the proposed block quality marker enables read-latency-aware block management

in ReadGuard. Second, ReadGuard adopts a priority-aware block management scheme based on the proposed

block quality marker. A ReadGuard-based FTL allocates blocks with short read latency to a higher-priority app

and continuously monitors the quality level of the allocated blocks so that high-priority read requests can be

serviced from the high-quality blocks. Third, we propose a priority-aware read-over-read command preemption

mechanism. When blocks are managed based on their read latency in a priority-aware fashion, a higher-priority

read should be able to preempt an ongoing lower-priority read command. Otherwise, a higher-priority read

command will experience an excessive amount of delay because a lower-priority read tends to be serviced from a

block with long read latency.

In order to evaluate the efectiveness of ReadGuard, we have implemented a ReadGuard-enabled FTL, rgFTL,

using an open SSD simulation platform [11]. Our experimental results using various real-world workloads show

that rgFTL can efectively diferentiate the read performance of apps according to their I/O priorities. In rgFTL,

the average read latency of the highest-priority app is up to 57.1% shorter than that of the lowest-priority app

while the baseline FTL does not diferentiate the read latency between these apps. Furthermore, rgFTL reduces

the 99th-percentile read tail latency of high-priority apps by up to 55.5%. Although rgFTL needs additional block

copy operations to avoid block-quality inversions among apps, their impact on SSD lifetime and performance

is not signiicant. RgFTL increases the average write latency by by about 2.8% because additional page writes,

which are needed to avoid block-quality inversions among apps, incur additional garbage collection.

2 Background

In order to support priority-aware read diferentiation, our proposed technique requires understanding key

parameters of NAND lash memory that afect the lash read latency. Therefore, we review the basics of the lash

read latency and the impact of read errors on the lash read latency. We also briely present an overview of an

existing priority-aware SSD.

2.1 NAND Flash Memory Basics

A lash cell is the fundamental component of NAND lash memory. Figure 2 depicts its organization, with

components such as the charge trap, blocking oxide, control gate, and tunnel oxide. Controlling the number of

electrons in a lash cell’s charge trap allows data to be stored. The threshold voltage (��ℎ) level of the lash cell

distinguishes the binary data stored in it, which is either ’0’ or ’1’. To change the ��ℎ of the lash cell, electrons

are either injected into or removed from the charge trap. This electron movement is facilitated by the tunnel

oxide, a thin layer of insulating material between the substrate and the charge trap.

In a lash die, individual lash cells are organized into a hierarchical structure. Each lash die has several planes

and hundreds to thousands of blocks within each plane. Each of these blocks is composed of multiple sub-blocks.

ACM Trans. Storage

4 • M. Chun et al.

The sub-blocks are represented as matrices with rows and columns composed of lash cells. These horizontal

rows, known as wordlines (WLs), connect the lash cells’ control gates, whereas the vertical columns, known as

bitlines (BLs), connect the cells’ drain and source terminals. When a wordline (WL) is activated, the same voltage

is applied to all cells of the target WL, allowing for simultaneous read and write operations across all cells on the

WL. The type of NAND lash decides how many pages a single WL corresponds to. For example, in a triple-level

cell (TLC) NAND lash memory, each WL is associated with three pages (MSB, CSB, LSB pages).

A read, a program, and an erase operation are the three fundamental operations of NAND lash memory. A

read operation applies a speciic voltage, read reference voltage ��� � , to distinguish between ��ℎ levels of lash

cells in target WL. The Flash chip determines the stored data by observing whether the current lows or not

through the BLs. A program operation applies a high voltage (e.g., 20V) to the cell’s control gate through its

target WL. As a result of the voltage diference, electrons from the substrate tunnel through the gate oxide and

are trapped in the charge trap, thus increasing the ��ℎ level of the cell. An erase operation operates at the block

granularity, whereas read and program operations operate at the page granularity. To erase the data within the

target block, the lash chip applies a high voltage (e.g., 20V) to the source terminal. The voltage diference causes

electrons to tunnel from the charge trap to the substrate via the tunnel oxide so that the ��ℎ levels of all cells in

the block are returned to the initial states.

2.2 Read Errors in NAND Flash Memory

Despite its nonvolatile nature, NAND lash memory is inherently prone to errors. Various error sources, such

as retention loss [16, 17] and program disturb [18], can shift the ��ℎ levels of lash cells beyond the ��� � value,

leading to potential bit errors in NAND lash memory. Figure 3 shows the��ℎ distribution in a WL of MLC NAND

lash memory, that employs four distinct��ℎ levels to store two bits per cell (E, P1, P2, and P3). Reference voltages

(��� � 0,��� � 1, and��� � 2) are used to determine the��ℎ levels of lash cells. The��� � � reference voltage distinguishes

P(� − 1) and P(�). In the initial state, as shown in Figure 3(a), all ��ℎ levels can be reliably distinguished using

reference voltages. Retention loss, however, causes unintended shifts in the ��ℎ levels, making it more likely to

overlap with ��� � � . The stored bits in the overlapped region of lash cells lip, resulting in raw bit errors of read

data.

The number of bit errors in read data is directly afected by the error characteristics of the target lash cells. The

high voltage stress involved in repetitive program/erase operations (i.e., P/E cycles) accelerates the deterioration of

a lash cell’s tunnel oxide. This deterioration weakens its insulating capabilities, resulting in rapid charge leakage

from the charge trap into the substrate. Furthermore, due to manufacturing process variations, particularly in 3D

NAND lash memory, the initial thickness of the tunnel oxide may difer between lash cells [19ś21]. Flash cells

Charge	
Trap

Source

Drain

Source Drain

Control	Gate Blocking	
Oxide

Tunnel	Oxide

Substrate

Tunnel	
Oxide

C
o
n
tr
o
l	G
a
te

Blocking	
Oxide

C
h
a
r
g
e
T
ra
p

S
u
b
s
tr
a
te

e‐

e‐

Fig. 2. An organization of a flash cell.

ACM Trans. Storage

ReadGuard: Integrated SSD Management for Priority-Aware Read Performance Diferentiation • 5

D
is
t
r
ib
u
t
io
n

	
o
f	c
e
ll
s

11

E

01

P1

10

P2

00

P3

Vref0 Vref1 Vref2

VthMSB LSB

01

P1

10

P2

Immediately	
after	prog.

Vref1

D
is
t
r
ib
u
t
io
n

	
o
f	c
e
ll
s

VthBit	errors

After

ret.	loss
Vadj

Read	retry

(a) (b)

Fig. 3. Changes in ��ℎ distribution of MLC flash cells and ��� � adjustment in a read-retry operation.

with a thinner oxide layer are inherently more susceptible to sustained voltage stress, causing them to wear out

faster. As a result, even when two WLs are exposed to the same error sources, the number of bit errors in their

stored data can vary signiicantly depending on their P/E cycles and inherent error characteristics.

2.3 Read-Retry in Modern SSDs and Its Impact on Read Latency

To ensure data reliability despite the heterogeneous error characteristics of modern NAND lash memory, modern

SSDs use strong error-correcting codes (ECC) that can correct several tens of raw bit errors. Unfortunately, due to

the high raw bit-error rate (RBER), even such a strong ECC often fails to correct all bit errors in modern NAND

lash memory. To address this, when the RBER of a read page exceeds the ECC correction capability (i.e., the

number of correctable bit errors), a modern SSD performs an read-retry operation. The read-retry operation

repeats reading of the page with adjusted ��� � values until the page’s RBER falls below the ECC capability or

until a set number of retry attempts is reached [19, 20, 22ś25]. Although read-retry is highly efective at ensuring

data reliability, it signiicantly increases the efective read latency of NAND lash memory, almost linearly with

the number of retry steps. Three read voltage adjustments are needed to retrieve the correct data (with ��� �) in

Figure 3(b), for instance, resulting in four times the normal read latency.

In general, the device-level latency ����� for reading a lash page can be expressed as ����� = (�� + ����

+ ����) × (������ + 1) where �� is the lash page access time, ���� is the data transfer time from a lash chip to

a lash controller, and ���� is the error correction time by the ECC engine. While ��, ����, and ���� are ixed

by lash manufacturers (i.e., they do not change during run time), ������ signiicantly varies depending on the

number of errors on the target page.

2.4 Overview of a Priority-Aware SSD

Although the lash read latency ����� is a key parameter in deciding the read latency at the app level, the

host-side read latency is signiicantly afected as well by SSD-internal states at the time of the read request issue.

Figure 4 illustrates how a read request � is processed in a priority-aware SSD [11ś14]. When the host issues �

containing a target logical block address (LBA) range, an address of host-side read bufer, and its priority, it is

irst transferred to the host interface logic in the SSD (1). The host interface logic splits the LBAs in the target

request range into a series of� lash read requests (i.e.,� transactions) (2). An LBA address of each lash read

request is converted to a physical page address (PPA) by the address translator. A transaction with a PPA (i.e., a

read command to the PPA) is then enqueued into a per-chip queue that is responsible for serving the PPA (3).

The transaction scheduler decides which transaction is issued irst by prioritizing the pending transactions in

per-chip queues. When the status of the target lash chip is ready, the highest priority request is issued to the

ACM Trans. Storage

6 • M. Chun et al.

lash chip (4). An ECC engine corrects potential error bits of the requested page (5) before the page is sent to

the host-side completion queue (6).

In existing priority-aware SSDs, regardless of a request priority, read commands are handled irst over other

lash commands (i.e., write and erase commands). When a read command is selected by the transaction scheduler,

if a program command or an erase command is currently serviced at the same target lash chip, the transaction

scheduler preempts the ongoing program/erase command by suspending its operation so that the read command

can be serviced irst [26, 27]. That is, read/write and read/erase interferences are minimized by command

suspension techniques in the existing prior-aware SSDs. However, if the ongoing command is read, existing

transaction schedulers [28] do not suspend the ongoing read command even if its priority is lower than that of

the newly selected read command.

When a host read request � requires� lash reads to� LBAs, �0� , ..., �
�−1
� , the host-side read latency �(�) is

given by��� {� (�0�), ..., ��
�−1
� } where � (�) represents the read latency of a read request to the LBA � that measures

from when a read request to the LBA � is fetched by an FTL to when the read request is completed. The read

latency �(�) of a read request to the LBA � consists of two terms, the lash-device latency for reading from the

LBA � and the waiting time before a lash read command is issued for accessing the LBA �.

3 Root Cause Analysis

In this section, we explain key reasons for poor read diferentiation in existing priority-aware SSDs. In a priority-

aware SSD, if the I/O priority of �� is higher than that of � � , the transactions for �� have a higher priority over

those for � � . Therefore, the transactions for a higher-priority request experience shorter waiting times over those

for a lower-priority request, thus efectively supporting the waiting time diferentiation over I/O priorities. For

example, Figure 5 shows the average waiting time of the same three apps in Figure 1. Unlike the read-latency

distributions (shown in Figure 1), the waiting times are quite nicely diferentiated according to the I/O priority of

the apps. Furthermore, since an incoming read command can preempt ongoing program/erase operations for

serving the incoming read irst, other lash operations do not interfere with read operations. Therefore, we start

from the device level read latency ����� to investigate the root causes of poor read diferentiation.

3.1 Cause 1: Large Variations in Read Latency

Modern SSDs sufer from a large number of ������ from the capacity-centric cell design (e.g., TLC and QLC) that

makes SSDs to be more vulnerable to quick ��ℎ shifts beyond ��� � � after programmed [20, 21, 24]. Furthermore,

the manufacturing process of modern lash chips introduces substantial process variability in terms of reliability

❶
High-Priority

Queues

Host

Low-Priority

Queues

SSD

Host Interface

Logic

Address

Translator

Transaction

Scheduler

…

Per-Chip

Queues

FTL

…

NAND Flash

Chip 1

Chip n
ECC

Engine

…

❻

❷
❸

❹

❺

SQ 1

SQ 1

CQ n

CQ n

…

…

Fig. 4. Key steps of read request processing.

ACM Trans. Storage

ReadGuard: Integrated SSD Management for Priority-Aware Read Performance Diferentiation • 7

0
50

100
150
200
250

Child stage Young stage Old stage

A
v

g
. w

a
it

in
g

ti
m

e
 (
μs

)

τhigh τmid τlow

Fig. 5. Comparisons of average waiting times of three apps.

between lash blocks [21]. To understand how these trends afected the variation in read-latency distribution in

an SSD, we performed comprehensive evaluations using 160 real 3D TLC lash chips. We measured the block-level

read latency (i.e., ������ of the worst page of a block) of more than 10,000 blocks under diferent P/E cycles and

retention times. (When no confusion arises, ������ of a block is used to mean ������ of the worst page in a block.)

Figure 6 shows block-level ������ distributions for the tested blocks under diferent operating conditions. We

make two key observations from Figure 6. First, there are substantial block-level ������ variations among lash

blocks. For example, ������ value of a block can vary signiicantly from 0 to 25. Such a large variation on ������

between blocks can be attributed to inter-block process variability of a 3D lash manufacturing process as well

as diferent operating conditions (e.g., P/E cycles or retention times). Therefore, when lash blocks experience

diferent P/E cycles and retention times, they exhibit diferent levels of raw bit errors, thus resulting in signiicant

variations of ������ .

Furthermore, even under the same P/E cycle and retention time condition, ������ of a block can difer by several

times. For example, under the zero P/E cycle and 12-month retention time condition, the maximum ������ value

of tested blocks was 3× larger than the minimum ������ value. The root cause of block-level ������ variations is

genetic process variability among blocks (e.g., diferent thickness of ��� or lash cell size) resulting from the

complex 3D NAND manufacturing procedure, as explained in Section 2.2.

Second, conventional P/E cycle-based block quality metrics are not adequate in predicting ������ of the worst

page in a block. That is, we cannot estimate ������ of a block accurately using a block quality metric based on

the P/E cycle and retention time. For example, ������ values of blocks with the same P/E cycle (e.g., 3K P/E

cycle) and the same retention time (e.g., 1-month retention time) are in the range between 8 and 16. If a ������

N
r
e
tr
y

o
f

a
 b

lo
c

k

25

20

15

10

0

5

Retention time [months]

Max.

Avg.

Min.

0K P/E cycle 3K P/E cycles2K P/E cycles1K P/E cycles

0 1 3 6 129 0 1 3 6 129 0 1 3 6 129 0 1 3 6 129

Fig. 6. Block-level ������ distributions.

ACM Trans. Storage

8 • M. Chun et al.

predictor were based on the P/E cycle and retention time only, it would be impossible to estimate ������ of a

block accurately. Our key observations from Figure 6 strongly suggest that we need a read-latency-centric new

measure for predicting ������ of a block so that we can manage SSD read requests in a priority-aware fashion.

3.2 Cause 2: Priority-Oblivious Block Management

It is commonly accepted that in existing priority-aware FTLs, it is not necessary to distinguish the quality of

diferent lash blocks because a wear-leveling mechanism in an SSD tends to maintain the quality of all the blocks

at a similar level. Therefore, although these FTLs honor the I/O priority until an I/O request is issued to lash

chips at the frontend of FTLs, they do not employ priority-aware block management techniques in key FTL

backend management modules.

To validate the claim that block quality management is not necessary in an FTL because of a wear leveler,

we evaluated if similar quality blocks are allocated to apps regardless of their app priority. We extended our

simulation environment [11] so that it can accurately relect the real device characterization results from our

characterization study (in Section 4.2).2 We collected ������ values of target blocks of read requests for three apps

used in Figure 1 at three distinct SSD lifetime stages: a child stage (at 500 P/E cycles), a young stage (at 1K P/E

cycles), and an old stage (at 3K P/E cycles). For this evaluation, We used three traces were collected from running

Yahoo! Cloud Service Benchmark [29] using RocksDB [30] with three diferent access patterns: an update-heavy

workload (KV�), a read-intensive workload (KV�), and a read-modify-write workload (KV�). A high-priority app,

�ℎ��ℎ , executes KV� while two lower-priority apps, ���� and ���� , run KV� and KV�, respectively.

Figure 7 shows block-level ������ distributions of each app using box plots. In Figure 7, block-level ������

values are normalized ������ values between 0 and 1, where the lower value, the lower ������ value. Unlike the

common belief on the homogeneous quality because of an efective wear leveler of an FTL, the box plots of

Figure 7 indicate that lash blocks with heterogeneous block quality were randomly allocated to three apps. For

example, in all three SSDs, ���� was allocated to better blocks than �ℎ��ℎ . Furthermore, at the old stage of the SSD

lifetime, most poor blocks were allocated to �ℎ��ℎ . This observation strongly suggests that the block quality of

lash blocks is not similarly maintained, thus requiring priority-aware block quality management for efective

read-performance diferentiation.

3.3 Cause 3: No Read-Over-Read Preemption

Existing command preemption techniques focus on suspending slow ongoing commands such as program and

erase operations when a new read command is issued because their latency is 5.7× and 30.4× longer than that

2See Section 6.1 for a detailed description of our simulation environment.

N
o

r
m

a
li

z
e

d
N
r
e
tr
y

0.0

0.6

0.2

1.0
0.8

0.4

τhigh τmid τlow τhigh τmid τlow
τhigh τmid τlow

Child stage Young stage Old stage

Fig. 7. Per-app block-level ������ variations.

ACM Trans. Storage

ReadGuard: Integrated SSD Management for Priority-Aware Read Performance Diferentiation • 9

of a read, respectively [31, 32]. When a read command conlicts with another ongoing read command, the new

read command must wait until the ongoing read command is completed although it is a higher-priority read

command.

When there is little diference in read latency among diferent blocks (as incorrectly assumed in existing

priority-aware FTLs), there may not be a strong need for supporting read-over-read preemption because an extra

latency delay for a high-priority app may not be signiicant unless a large number of low-priority reads were

intensively issued to the same target lash chip before the high-priority read. However, when an FTL supports

read-latency-aware block management over priorities, a read-over-read preemption mechanism makes a big

diference for high-priority reads, especially for their tail latency. In such an FTL, since the read latency of

high-quality blocks would be shorter than that of low-quality blocks unless the read-over-read preemption is

eiciently supported, the read latency of high-priority reads can be substantially degraded by low-priority reads.

To understand the impact of read-over-read preemption on the read tail latency when read-latency-aware

block management is fully supported, we compared the read-latency distributions of three apps used in Figure 7,

�ℎ��ℎ , ���� , and ���� , under two FTL conigurations, one with a read-over-read preemption mechanism, rorFTL,

and the other without it, nopFTL. Both FTLs were conigured to guarantee that a higher-priority app is allocated

to blocks with shorter read latency. The 99-percentile tail latency of �ℎ��ℎ under nopFTL was up to 37.4% longer

than that under rorFTL in the old SSD. Furthermore, the average read latency of �ℎ��ℎ was up to 25% longer than

that under rorFTL as well.

4 Read-Latency-Centric Block Marker

To keep track of the heterogeneous block quality in terms of the read latency, we build a new block quality model

that can accurately estimate ����� of a block. Unlike many existing block quality markers [21, 33, 34] which

focus on predicting the wear status of a block, ReadGuard needs a block quality marker that can be used to

estimate ����� of a block. Since ������ is the only run-time variable in deciding ����� , the proposed block

quality model, the ������ predictor �� (�) of a block �, aims to predict the ������ value of the slowest page in a

block �. To the best of our knowledge, the proposed �� (�)model is the irst block quality metric that is specialized

for estimating ������ .

In developing an efective �� (�) model, we explore a strong correlation between ������ of a block � and the

raw bit error rate (RBER) of the block �.3 In order to understand the relationship between ������ and RBER of a

block, we conducted a characterization study using real 3D TLC NAND lash chips. (See Section 4.2 for a detailed

description of our methodology.) Figure 8 illustrates how ������ and RBER of a block are related to each other in

diferent P/E cycles and retention months. As shown in Figure 8, ������ of a block can be expressed as a step

function of RBER of a block. Therefore, we take a two-step approach to building a �� (�) model. As a irst step, we

predict the number of raw bit errors of the block �. Based on the estimated number of raw bit errors, we predict

the ������ of the block �.

As explained in Section 2.2, raw bit errors of a block consist of two major error sources: the bit errors caused

by program disturb and retention loss, respectively. The bit errors by program disturb occur when pages in a

block are programmed, while the bit errors by retention loss continually increase after the pages in the block are

written. Therefore, it is logical to build a �� (�) model using two submodels that correspond to two error sources

of a block. Figure 9 conceptually illustrates how �� (�) of a block � is decided under the proposed method. When

�� (�) of the block � is needed at time ���� , two error attributes of the block �, ����� (�) and Δ�(�), are computed.

The ����� (�) attribute (1) represents the number of initial raw bit errors of the block � when its pages were

most recently written at time �� (where �� ≤ ����). The ����� (�) attribute indicates how much the block � was

afected by program disturbance. The Δ�(�) attribute (2) is used to estimate the number of errors that have been

3Similar to the deinition of ������ of a block, we deine the RBER value of a block as the RBER value of the worst page in a block.

ACM Trans. Storage

10 • M. Chun et al.

accumulated to the block � since it was programmed at time �� . The Δ�(�) attribute represents how much the

block � was afected by retention loss during the time interval (�� , ����]. By adding ����� (�) and Δ�(�) values, the

total number �(�) of raw bit errors of the block � at time ���� is computed (3). Finally, �� (�) is computed using a

step function that relates �(�) to �� (�) (4). Note that in Figure 9, the block � has an additional attribute age(�).

The age(�) attribute, which represents the wear status of the block �, plays a key role in computing both ����� (�)

and Δ�(�) because both ����� (�) and Δ�(�) are signiicantly afected by the wear status of the block �.

4.1 NAND Age Predictor: age(�)

The key prerequisite of estimating the number of raw bit errors of a block � is to know the accurate lash wear

status of the block because the number of raw bit errors of the block varies signiicantly depending on the wear

status of lash cells in the block [19, 21, 22]. For example, the number of retention error bits of a block under the

same retention time condition (e.g., 12 months) can be several times diferent due to the varying wear status

of the blocks. As discussed in Section 2.2, the lash wear status is closely related to the state of tunnel oxide in

lash cells (i.e., a trap density). However, it is practically impossible to measure the trap density during run-time.

As an alternative metric to diferentiate the wear status of a lash block, several previous studies [21, 33, 34]

have exploited the number � (�) of retention bit errors after the �-month retention time at 30◦C.4 In our study,

following the common industry practice (i.e., the JEDEC standard [38, 39]), we use � (12) with the 12-month

retention time.5

Although � (12) is an accurate indicator of the lash wear status of a block, it is still not a practical metric to

be used during run time because it measures future bit errors after 12 months since the block was programmed.

4Previous studies about NAND physics have shown that the number of retention bit errors has a near-linear relationship with the number of

traps [35ś37]. Furthermore, for recent multi-level lash memory, retention errors are responsible for the majority of the total number of raw

bit errors, especially when the lash memory gets aged [19, 22, 24].
5Although diferent retention times (e.g., six months) may be efective as well, we use the 12-month retention time requirement in this paper

because it is commonly used as the worst-case reliability condition in practice.

N
r
e
tr
y
o
f	a

	b
lo
c
k

	

#	of	raw	bit	errors	per	1	KB	of	a	block

0

5

10

15

20

25

100 150 200 250 300 350 400

0

5

10

15

20

25

500 550 600 650 700 750 800

#	of	raw	bit	errors	per	1	KB	of	a	block

N
r
e
tr
y
o
f	a

	b
lo
c
k

	

NP/E	=	2K
6	mos.	<	Ret.	<	9	mos.

NP/E	=	1K
Ret.	<	6	mos.

Fig. 8. A relationship between RBER and ������ values of flash blocks under diferent operating conditions.

Block B

with age(B)

Flash blocks

…

❶

❷

E
init

(B)

∆E(B)

❸
E(B) nr(B)

❹

Fig. 9. An overview of predicting ������ of a block �.

ACM Trans. Storage

ReadGuard: Integrated SSD Management for Priority-Aware Read Performance Diferentiation • 11

Table 1. A summary of variables for the age(�) atribute.

Variable Description

��/� P/E cycles

������ Erase latency

�0 No. of bit errors of an LSB page in the irst WL right after program

������ Average length of time interval between successive erase (efectively at 30◦C)

Because of this reason, � (12) is mostly used as an of-line metric for characterizing the wear status of lash

cells. Therefore, we need an accurate online predictor for � (12). Note that the most common index for the lash

wear status, the number ��/� of program and erase cycles, does not accurately predict � (12) because it cannot

account for key variations that afect the lash wear status such as process variability, I/O workload variations,

and operating environment variations [21].

In order to design an accurate online predictor for � (12), we use RealWear [21], which is one of the most

accurate lash aging metrics. Our proposed � (12) predictor of a block �, denoted as age(�), uses four run-time

accessible parameters that are summarized in Table 1. In addition to ��/� , three additional parameters are used:

the erase latency ������, the number �0 of bit errors of an LSB page in the irst wordline, and the average length

������ of time intervals between successive erase operations at 30◦C.6 The additional three parameters are used to

complement the weaknesses of ��/� as a wear status predictor. For convenience, age(�) is a normalized value

by computing a ratio of � (12) of the block � to the maximum number of bit errors that can be corrected by an

ECC module. When the block � is alive (i.e., it can reliably store data under the 12-month retention requirement),

0 ≤ age(�) ≤ 1. From the proposed predictor equation in [21], age(�) can be expressed as:

age(�) = �0 + �1 · ��/� + �2 · ������ + �3 · �0 + �4 · ��(������).

Five coeicients, �0, �1, �2, �3, and �4, were estimated by the least-squares approximation method. The constant

term �0 relects inborn defects from a manufacturing process. (See the reference [21] for a complete description

of RealWear including its validation results as a NAND age predictor.)

4.2 ������ Predictor Function: �� (�)

Model Construction. As described in Figure 9, the total number �(�) of raw bit errors of a block � at time ����
is calculated by a sum of ����� (�) and Δ�(�) at time ���� . The ����� (�) value of the block �, which indicates how

much lash cells were afected by program disturb after the block � was programmed, is known to have a strong

and positive linear correlation with the wear status of lash cells [21]. Therefore, ����� (�) can be expressed as:

����� (�) = �5 · age(�) + �6. (1)

In Equation (1), the irst term represents the number of raw bit errors of a block induced by the program

disturbance efect and the second term represents the number of inborn bit errors of a block from a manufacturing

process.7 In order to ind ����� (�) at time ���� , we use the ����� (�) value at time �� , the time when the block was

most recently programmed. Since age(�) changes only when the block is erased, ����� (�) at time �� is still valid at

time ���� because the block � was erased most recently at time �� .

6The impact of ������ , which models the efect of I/O workload variations and operating environment variations on the lash wear status,

signiicantly varies depending on the operating temperature. For example, ������ of 1 hour at 50
◦C has the same impact as ������ of 13

hours at 30◦C. We used the baseline temperature of 30◦C in ������ . When ������ at T
◦C was measured, it is converted to ������ at 30

◦C

using the Arrhenius’s Law [21, 22].
7To decide �5 and �6, we used the non-linear least squares algorithm to it ����� (�) to the measurement data from a characterization study.

ACM Trans. Storage

12 • M. Chun et al.

The Δ�(�) value of the block � at time ���� indicates how many additional raw bit errors were accumulated to

the block � since it was most recently programmed at time �� . As retention loss and read disturbance account for

most of the additional raw bit errors, the proposed function employs two variables to relect these error sources:

the data retention time ���� and the number ����� of read operations to a block. As well known, the additional

raw bit errors by retention loss have a logarithmic relationship with ���� [19, 24, 25, 40], while the additional

raw bit errors by read disturbance phenomenon are exponentially increased with ����� [41, 42].8 Since the lash

wear status (e.g., age(�)) of a block signiicantly afects the additional raw bit errors by each error source, our

proposed Δ�(�) can be expressed as follows:

Δ�(�) = �7 · (age(�) + �8)
{

�� (1 +����) + � (�9 ·�����)
}

. (2)

To derive ive coeicients, �5, �6, �7, �8, and �9, we used the non-linear least squares algorithm by itting

measurement data from our device characterization study to Equation (2).9 The parameters �0 to �9 are itting

coeicients and constants to ine-tune the inal polynomial equation to relect the error characteristics of target

chips, which can be determined via real-device characterization of the chips. In Equation (2),���� is the equivalent

data retention time at 30◦C. The speciic thermal condition of 30◦C in ���� is needed because the impact of the

retention time on the number of retention errors varies signiicantly depending on the data retention temperature.

For convenience, we convert a data retention time � �◦�
��� at x◦C to a data retention time ���� at 30

◦C using the

Arrhenius’s Law [21, 22]. In order to ind Δ�(�) at time ���� , we use age(�) at time �� and (���� - ��) at 30
◦C. To

ind (���� - ��) at 30
◦C, we read the current temperature from a thermal sensor in an SSD which is commonly

adopted for internal management of an SSD such as performance throttling for thermal management [43].

Based on ����� (�) and Δ�(�) at time ���� , the total number �(�) of error bits at time ���� is computed by adding

����� (�) and Δ�(�) at time ���� . Based on �(�), ������ of the block � can be predicted by using a step function � ()

as shown in Figure 8. The proposed ������ predictor �� (�), therefore, can be summarized as:

�� (�) = � (�� (�) + Δ�(�)). (3)

Validation Methodology. To evaluate our proposed �� (�), we performed comprehensive evaluations using

160 real 3D lash chips.10 To avoid sample distortions, we divided our test samples into three groups: 60 chips

for model construction, 60 chips for validating the adequacy of our model, and the other 40 chips for building

a simulation environment (as will be explained in Section 6.1). In our evaluations, we carefully designed each

measurement session following the test procedures of the JEDEC industry standards [38, 39, 46] for commercial

SSDs. These standards specify the test methodology (e.g., a sample size or test conditions) and qualiication

criteria for evaluating NAND lash memory. One key recommendation for high-conidence characterization

studies is to use more than 39 lash chips from 3 diferent wafers. Since we have used 60 lash chips from 5 wafers

for designing the model, we believe that our sample size is suicient to obtain statistically meaningful results.

For model validations, we used another group of 60 chips. From each chip, to minimize potential distortion in

our results, we evenly selected 16 blocks from diferent physical locations of the chip and tested all the pages in

8The retention errors shift program states to the left while the read disturbance errors shift erase state to the right. Therefore, these two error

sources afect the number of bit errors independently.
9The next page describes the validation methodology in detail, including how we measured the RBER values of the tested blocks.
10In our characterization study, we used 48-layer 3D TLC lash chips from the same NAND lash manufacturer. Even though we were able to

validate our new error model only for the speciic type of chip (due to the limited access to real chips in academia), we strongly believe that

our model (and the methodology to derive the model) can be used for a wide range of chips due to two reasons. First, our tested chips well

represent modern 3D NAND lash memory because most commodity chips including SMArT/TCAT/BiCS [44, 45] have similar structures

and cell types, e.g., vertical channel structures, gate-all-around transistors, and charge-trap type lash cells, thereby sharing key device

characteristics. Second, we derive our model based on well-known error characteristics of NAND lash memory that are validated in a large

body of prior work (using diferent types of chips) [19, 22], without relying on device-speciic or technology-speciic characteristics.

ACM Trans. Storage

ReadGuard: Integrated SSD Management for Priority-Aware Read Performance Diferentiation • 13

each block. To evaluate the impact of diferent variable combinations, we created test block samples for each

combination by precisely controlling four variables of age(�) and ���� . For example, to evaluate the impact of

combinations of n ������ times and m ���� times, we generated � ×� samples, and each sample consists of 960

blocks (16 blocks × 60 chips).

Validation Results. In order to demonstrate that �� (�) is an accurate predictor that predicts ������ of a lash

block, we present four key validation results. Figure 10(a) shows how well �� (�) predicts ������ of a lash block.

The x-axis of the igure represents the predicted ������ values �� (�), while the y-axis shows a distribution of

measured ������ values from real lash blocks with the same �� (�) value using a box plot. For a given � as a

predicted ������ value, a min-max plot shows a distribution of measured ������ values within an interval [���(�),

��� (�)] where���(�) is the minimum measured ������ value and��� (�) is the maximum measured ������

value among the blocks with � as their ������ predictor values. As shown in Figure 10(a), �� (�) works properly as

an on-line ������ predictor of a block. The predicted ������ values were very close to the measured ������ values

from real lash blocks. Especially, for all min-max plots shown in Figure 10(a), the diference between���(�) and

��� (�) at most 1 for all � ≥ 0. Thus, if �� (��) < �� (��), it is guaranteed that ������ of �� ≤ ������ of �� . That is,

�� (�) is suicient to distinguish the diference in ������ of lash blocks.

We also validated the �(�) model from Equation (2) with the measured data under seven diferent conditions.

Figures 10(b), 10(c), and 10(d), (e) compare the predicted �(�) values with the measured ones when the data

retention time was changed in young blocks (with age(�) = 0.2), moderately-worn blocks (with age(�) = 0.5),

and old blocks (with age(�) = 0.8), respectively. Figures 10(f), 10(g), and 10(h) compare predicted �(�) values with

measured ones when the number of experienced read operations of a block was changed in young blocks (with

age(�) = 0.2), moderately-worn blocks (with age(�) = 0.5), and old blocks (with age(�) = 0.8), respectively. Note

that the data retention time in Figures 10(b), 10(c), 10(d), and 10(e) assumes the retention temperature of 30◦C,

and the read operations in Figures 10(f), 10(g), and 10(h) are fully sequential pattern. In all cases, the percentage

root mean square error (%RMSE) is less than 10%, which means that �(�) can accurately predict bit errors of the

block � under various conditions (various ��/� , ���� , and �����).

To demonstrate that our �(�) model is a simple model to implement in practice with required high accuracy,

we evaluated if the current �(�) model includes redundant model variables. We evaluated the prediction accuracy

of simpler �(�) models with smaller model variables. Figure 10(d) compares %RMSE values of two simpler �(�)

models with the proposed �(�) model based on the diference between predicted �(�) values and the measured

�(�) values in each model. We considered two simpler models, C1 and C2, with three model variables only: (C1)

the normalized ��/� value was used instead of age(�) value in Equation (1), and (C2) ���� was not included in

Equation (2). As shown in Figure 10(d), both simpler models exhibit much lower prediction accuracy over the

proposed �(�) model, thus demonstrating that the proposed �(�) model has no redundant model variable.

5 Design of ReadGuard

The key contribution of the new block quality marker described in Section 4 is that it enables an FTL to manage

its blocks based on the read latency level of each block. In this section, we describe ReadGuard, an integrated

priority-aware lash management scheme based on our new block quality marker. A key design requirement of

ReadGuard is to support the read performance diferentiation in proportion to the app priority without afecting

the performance/lifetime of a ReadGuard-enabled SSD. Figure 11 shows an overall organization of an FTL, called

rgFTL, that employs the proposed ReadGuard scheme.

It is challenging for an FTL to determine whether an I/O request is latency-sensitive or not based on the limited

information. As a more practical and straightforward solution, we assume that an app determines its own I/O

priority based on a better understanding of I/O responsiveness. For passing I/O priority information from apps to

the FTL via the kernel I/O stack, we modify the Linux kernel’s process control block to keep the I/O priority

ACM Trans. Storage

14 • M. Chun et al.

E(B) E(B)
w\o	age(B)

E(B)
w\o	Tret

Min.

Max.
75%
Avg.
25%

%
R
M
S
E

0

10

20

30

40

0

4

8

12

16

20

1 3 5 7 9 11 13 15 17 19

Min.

Max.

Predicted Nretry by	nr(B)

M
e
a
su
re
d

	N
r
e
tr
y

(a)

(i)

20
30
40
50
60
70
80

20 30 40 50 60 70 80

Predicted bit	errors	by	E(B)

M
e
a
su
re
d

	b
it

	e
r
ro
r
s

age(B)	=	0.2
Ret.	<	1	mo.

(b)

40
50
60
70
80
90
100

40 50 60 70 80 90 100

Predicted bit	errors	by	E(B)

M
e
a
su
re
d

	b
it

	e
r
ro
r
s

age(B)	=	0.5

(c)

no	ret.

3	days	ret. 7	days	
ret.

40

50

60

70

80

90

40 50 60 70 80 90

110

120

130

140

150

160

110 120 130 140 150 160

30
45
60
75
90
105
120

30 45 60 75 90 105120

30
45
60
75
90
105
120

30 45 60 75 90 105120

60

90

120

150

180

60 90 120 150 180

Predicted bit	errors	by	E(B)

M
e
a
su
re
d

	b
it

	e
r
ro
r
s

Predicted bit	errors	by	E(B)

M
e
a
su
re
d

	b
it

	e
r
ro
r
s

Predicted bit	errors	by	E(B)

M
e
a
su
re
d

	b
it

	e
r
ro
r
s

Predicted bit	errors	by	E(B)

M
e
a
su
re
d

	b
it

	e
r
ro
r
s

Predicted bit	errors	by	E(B)

M
e
a
su
re
d

	b
it

	e
r
ro
r
s

(d) (e) (f)

(g) (h)

age(B)	=	0.8
No	Ret.

age(B)	=	0.8
Ret. < 7 days.

age(B)	=	0.2

age(B)	=	0.5 age(B)	=	0.8

50K	reads.

200K	reads.

50K	reads. 200K	reads.

50K	reads.

200K	reads.

Fig. 10. Block quality function validation results.

value and employ NVMe’s queueing-based I/O priority feature. During the initialization phase, an app sets its

I/O priority value using a custom API. When an app issues an I/O request, the modiied kernel I/O stack (block

layer and NVMe driver) retrieves the app’s I/O priority value from the process control block and inserts the I/O

request into the appropriate NVMe queue based on the app’s priority value. The host interface layer in the FTL

then prioritizes the I/O request based on the priority level of the NVMe queue from which it comes.

As shown in Figure 11, the proposed rgFTL, which is based on an existing page-level FTL, has three key

modules for supporting ReadGuard: the block grader (BGR), the priority-aware block manager (PBM), the WAF

monitor (WM), and the extended suspend/resume arbiter (ESRA). The BGR module keeps track of the block

quality �� (�) of a block �. To this end, it manages an extended block status table (eBST) that stores parameters

that are related to the block quality function. The PBM module is in charge of matching apps’ priority with the

quality of allocated blocks. To manage free blocks and used blocks based on their �� (�) values, the PBM module

uses freePool and usedPool (which work as a typical priority queue). The block allocator (BA) of the PBM

module ensures that higher-priority apps use higher quality blocks over lower-priority apps at the initial block

allocation time. The block quality monitor (BQM) of the PBM module monitors if there is block-quality inversion

among allocated blocks for apps with diferent priorities. When there is block-quality inversion, the BQM module

ACM Trans. Storage

ReadGuard: Integrated SSD Management for Priority-Aware Read Performance Diferentiation • 15

resolves it by migrating data from quality-inverted blocks. The ESRA module preempts an ongoing operation

when the operation conlicts with an incoming read request on the same lash chip.

In order for rgFTL to control the amount of additional writes by the BQM module (so that it cannot negatively

afect the SSD lifetime), rgFTL dynamically changes the condition of block-quality inversion depending on the

accumulated amount of writes by the BQM module. The WM module monitors the amount of extra writes from

the BQM module and computes its proportion in the total amount of writes for SSD-internal management tasks

(e.g., a garbage collector and a wear leveler). When the extra writes from the BQM module exceed the current

upper bound, the WM module changes the condition of block-quality inversion to be more strict. If the extra

writes from the BQM module are smaller than the current upper bound, the WM module modiies the condition

of block-quality inversion to be easier to meet. (See Section 5.3.)

5.1 Block Grader

Algorithm 1 shows how the BGR module grades blocks by exploiting the proposed block-quality model in

Section 4. To accurately estimate �� (�) of a block �, the BGR module needs the following ive values, the number

��/� of program/erase cycles, the data retention time ���� , the number of reads ����� , the average length ������

of time intervals between successive erase operation, the erase latency ������, and the number �0 of bit errors

immediately after program11, for each block. ��/� is simple to manage because it increments by one whenever

the block � is erased. At time � , ���� of the block � is estimated by (� - �0) where �0 is the time when the block �

was most recently programmed with its irst page. The BGR module resets �0 for each block � after the block �

is erased. The BGR module modiies ������ whenever a block is erased using ���� and the current temperature

from a thermal sensor. Since the remaining two parameters, ������ and �0, that are related to age(�) attribute,

change slowly over the number of block erasures, the BGR module tracks these values at a coarse granularity, say

every 100 P/E cycles. ������ is directly measured at the lash controller, and �0 is measured by reading back the

irst page of a block immediately after the irst page is programmed to the block. Once new ������ and �0 are

measured for a block, the BGR module updates the age(�) value for the block in the eBST. When �� (�) value is

11Our metric uses �0 of an LSB page in the irst wordline among a block.

program/read/erase	

nr(B)

rgFTL:	a	ReadGuard‐Enabled	FTL

Wear	
Leveler

Garbage	
CollectoreBST

Block	Grader

t0NP/E age(B)LdwellNread

…

tERASEEo

Flash	Blocks

Priority‐Aware	Block	Manager

Block	
Allocator

Block	
Quality

Monitor

usedPool

…

freePool

…

host	read/writes	with	priority

WAF	
Monitor

…

Extended

S/R	Arbiter

Fig. 11. An overview of the proposed rgFTL.

ACM Trans. Storage

16 • M. Chun et al.

needed by rgFTL at time � for the block �, the BGR module returns �� (�) using the current age(�) in the eBST,

(� - �0), and ����� .

In summary, the BGR module maintains ive per-block parameters in the eBST, ��/� , �0, ����� , ������ , and

age(�). However, its storage overhead is negligible because these parameters are managed at the block granularity.

For example, four bytes would be suicient to store each of the four parameters, so the extra memory of 5 MB

would be suicient for a 2 TB SSD (see Section 6.1). Although it also takes a few cycles to update parameters for

every lash erase operation, the extra cycles would be negligible because the latency of erase operations is several

orders of magnitude longer than the extra cycles.

Algorithm 1 Block grading

1: Initialize parameters for each block in eBST:

��/� (Number of program/erase cycles)

�0 (Last programming time of block)

����� (Number of reads)

������ (Average time interval between erase operations)

age(�)

2: function updateEraseRelatedParameters(block �, time �)

3: Initialize two variables: ������ and �0
4: Increment ��/� by 1

5: Update ���� for � as (� − �0)

6: Reset �0 for � after each erase operation

7: Modify ������ based on ���� and current temperature

8: if ��/� modulo 100 is 0 then

9: Measure ������ directly from the lash controller

10: Measure �0 by reading the irst page of � after programming

11: Update age(�) for �

12: end if

13: Free two variables: ������ and �0
14: end function

15: function updateReadRelatedParameter(block �)

16: Increment ����� by 1

17: end function

18: function calculateBlockuality(block �, time �)

19: return Block quality �� (�) for � using age(�) in eBST, (� − �0), �����

20: end function

21: Main:

When block � needs to be erased to serve a write request:

Call updateEraseRelatedParameters(�, �)

When a read request arrives to block �:

Call updateReadRelatedParameter(�)

When block quality �� (�) for block � is needed at time �:

Call calculateBlockuality(�, �)

ACM Trans. Storage

ReadGuard: Integrated SSD Management for Priority-Aware Read Performance Diferentiation • 17

Algorithm 2 Priority-Aware block management with three priorities

1: Initialize:

freePool, usedPool (priority queues ordered by �� (�))

subPℎ��ℎ , subP��� , subP��� (subpools in freePool for each priority level)

�ℎ��ℎ , ���� (per-priority inversion margins)

���ℎ� (GC threshold)

2: function allocateBlock(app �� , priority ��)

3: Allocate block � from subP�

4: Delete block � in subP�
5: Insert block � to usedPool

6: if Number of free blocks in subP� ≤ ���ℎ� then

7: Invoke garbage collection for subP�
8: end if

9: Update subP� pointers

10: end function

11: function detectInversion(priority �� , priority � �)

12: Initilize allInversionIsResolved to �����

// Detect all possible block-quality inversion

13: while allInversionIsResolved is ����� do

14: Find the worst block �� of �� and the best block �� of � �
15: if �� (��) - �� (��) > �� then Call ResolveInversion(�� , ��)

16: else

17: Set allInversionIsResolved to ����

18: end if

19: end while

20: end function

21: function resolveInversion(block ���� , block �ℎ��ℎ)

// ���� is a lower-quality block and �ℎ��ℎ is a higher-quality block

22: if age(�ℎ��ℎ) < age(����) then

23: Migrate valid data of �ℎ��ℎ to a new block in low-priority free pool subP���
24: Move �ℎ��ℎ to high-priority free pool subPℎ��ℎ
25: else

26: Refresh valid data of ���� to a new block

// ���� and ����� are reset to 0

27: end if

28: end function

29: Main:

When a �� with �� requires a free block:

Call allocateBlock(�� , ��)

Every predeined interval:

Call detectInversion(�ℎ��ℎ , ����)

Call detectInversion(�ℎ��ℎ , ����)

Call detectInversion(���� , ����)

ACM Trans. Storage

18 • M. Chun et al.

5.2 Priority-Aware Block Manager

The main role of the PBM module, which is the core component of ReadGuard, is to guarantee that blocks are

managed so that the priority order of apps is ensured. Algorithm 2 shows how the PBM module manages blocks

based on I/O priorities of apps. The PBM module maintains two ordered queues, freePool and usedPool, of

free blocks and used blocks, respectively. Both freePool and usedPool are ordered by �� (�) values. When the

BA module of the PBM module allocates a free block to an app �� with priority �� , it irst searches for a proper

free block (from freePool) that meets the priority order with the other apps. To make the search process more

eicient, when � diferent priority levels are supported, blocks in the freePool are grouped into � subpools,

subP0, ..., subP�−1, where blocks in subP� have higher quality over ones in subP� if � < � . When �� with �� needs

a free block, the BA module requests a free block from subP� . Since each subpool covers a sequence of contiguous

free blocks (that were sorted by their �� (�) values), the BA module maintains one pointer for each subpool that

points to the starting location of each subpool within freePool. Whenever a block is consumed from a subpool

or a new block is added to freePool, subpool pointers are updated.

Although the BA module honors the priority order of apps when a block is initially assigned to a requesting

app, it cannot completely prevent block-quality inversion because the quality of the allocated block dynamically

changes. The BQM module is responsible for detecting block-quality inversion of blocks in usedPool during

run time. In order to manage the number of extra writes for resolving block-quality inversions, we introduce

two additional variables in deciding if block-quality inversion occurs between blocks. Per-priority inversion

margins, �ℎ��ℎ and ���� , are used in deciding block-quality inversion in �ℎ��ℎ and ���� , respectively. In �ℎ��ℎ ,

when �� (��) of the worst block �� of �ℎ��ℎ is larger than �� (��) of the best block �� of ���� at least by �ℎ��ℎ ,

there exists block-quality inversion between �ℎ��ℎ and ���� . Similarly, in ���� , when �� (��) of the worst block

�� of ���� is larger than �� (��) of the best block �� of ���� at least by ���� , there exists block-quality inversion

between ���� and ���� . Note that the number of detected quality-inverted blocks is strongly dependent on two

per-priority inversion margins. When the margins are set to a small value (e.g., 1), more block pairs may satisfy

the condition of block-quality inversion. On the other hand, when the margins are set to a large value (e.g., 10),

fewer block pairs can meet the condition. By dynamically adjusting �ℎ��ℎ and ���� , we control the number of

quality-inverted blocks, thus managing the amount of extra writes needed for resolving quality-inverted blocks

within an acceptable limit.

To ind block-quality inversion, every predeined interval12, the BQM module checks if the diference of �� (�)

values between the worst used block for �ℎ��ℎ and the best used block for ���� exceeds �ℎ��ℎ . Similarly, the same

check is performed between ���� and ���� . When the BQM module identiies two quality-inverted blocks, �ℎ��ℎ
and ���� , it resolves them by one of two methods, one based on age(�) and the other based on ���� and ����� .

We assume that �ℎ��ℎ is a higher quality block allocated for a lower-priority app ���� and ���� is a lower quality

block allocated for a higher-priority app �ℎ��ℎ .

As the irst method, we check if there is inversion in age(�) values of �ℎ��ℎ and ���� . That is, we check

if age(�ℎ��ℎ) < age(����). This type of block-quality inversion is possible, for example, when a high-priority

write-intensive app �ℎ��ℎ and a low-priority write-once app ���� run together. If a block �ℎ��ℎ were allocated to

���� a long time ago, its age(�ℎ��ℎ) value could be lower than that of a block that was recently allocated to �ℎ��ℎ
because �ℎ��ℎ tends to quickly increase age(�) values of its allocated blocks because of their frequent P/E cycles.

We resolve the irst type of block inversion by moving �ℎ��ℎ to a free pool subPℎ��ℎ of a high-priority app �ℎ��ℎ so

that future block-quality inversion can be avoided by allocating �ℎ��ℎ for a high-priority app �ℎ��ℎ . Furthermore,

since data in �ℎ��ℎ are moved to a free block �′ in a free pool subP��� of a low-priority app ���� , �� (�
′) should be

larger than �� (�ℎ��ℎ), thus mitigating future block inversion between �ℎ��ℎ and ���� .

12Since ������ of a block increases slowly by���� , we set default interval length by seven days at 30◦C.

ACM Trans. Storage

ReadGuard: Integrated SSD Management for Priority-Aware Read Performance Diferentiation • 19

n
r
(B
)

0

1

usedPool

freePool

Block Quality

Monitor

eBST

block used by τi

Bhigh

Blow …

t0
age(B)

475s 0.5
400s 0.3

B Blow Bhigh B B B…

blocks used by τk

…B B

subPi

…B B

subPj

…B B

subPk

…

❶ detect block quality

inversion between Bhigh & Blow

❷ detect age(Bhigh)

< age(Blow)
❹ erase Bhigh

❺ insert Bhigh to
subPi

❸ copy pages in Bhigh to
a block in subPj

blocks used by τj

Fig. 12. An example of age(�) inversion handling.

Figure 12 illustrates how the BQM works when inversion in age(�) values occurs using a high-priority app ��
and a low-priority app � � . The BQM module irst detects block-quality inversion between �ℎ��ℎ and ���� (1) and

inds age(�ℎ��ℎ) < age(����) by referencing the eBST (2). When the BQM module detects inversion in age(�)

values, the BQM module moves data of the block �ℎ��ℎ to a free block in subP� (3 in Figure 12) and erases the

block �ℎ��ℎ (4). After that, the BQM module forces the block �ℎ��ℎ to be moved to subP� so that it can be used for

a higher-priority app in a future block allocation time (5).

If the irst method cannot be applied, age(�ℎ��ℎ) should be greater than or equal to age(����). Therefore, ����
of ���� should be much larger than that of �ℎ��ℎ if �ℎ��ℎ and ���� could meet the condition of quality-inverting

blocks. We resolve the second type of block inversion by refreshing (i.e., rewriting to the same block) data in

���� . Since ���� of ���� resets to zero, the block quality of ���� should be better than that of �ℎ��ℎ . Note that to

avoid two types of block-quality inversion during run time, it is inevitable to move data between the afected

blocks, thus possibly degrading the SSD lifetime. To avoid the SSD lifetime from being degraded by too many data

movements from the BQM module, we need an intelligent mechanism to control the amount of data movements

from the BQM module.

5.3 WAF Monitor

The main role of the WM module is to periodically monitor the write overhead from the BQM module and to

properly adjust two run-time margin variables, �ℎ��ℎ and ���� , that are used in detecting quality-inverted blocks in

�ℎ��ℎ and ���� , respectively. By modifying �ℎ��ℎ and ���� during run time, rgFTL can achieve high diferentiation

in read performance among apps with diferent priorities with little degradation on the SSD lifetime. Each margin

variable is represented as a normalized number between 0 and 1 over the maximum observed ������ value. In

the current version of rgFTL, we allow the write overhead of the BQM module to be less than 10% of the total

SSD-internal writes that are required for managing an SSD.13

In adjusting �ℎ��ℎ and ���� , the WM module considers the proportion � of additional writes by the BQM

module over the total amount of writes for managing an SSD. The initial values of both margins are set to 0.1 so

that the BQMmodule equally diferentiates the read performance among three priorities. The WMmodule checks

13Although rather arbitrary, 10% was selected based on our observations from device characterization study. For all the tested lash blocks

from 110 lash chips, they were still alive when their P/E cycles reached 110% of the maximum allowed P/E cycles.

ACM Trans. Storage

20 • M. Chun et al.

the current � value at every monitoring interval.14 When � is larger than 10%, the WM module increases the

margin variables by 0.1 so that fewer blocks are detected as quality-inverting blocks, thus decreasing the write

overhead from the BQM module. On the other hand, when � is smaller than 10%, the WM module decreases the

margin variables by 0.1 so that more blocks can be detected as quality-inverting blocks, thus better diferentiating

read performance among apps with diferent priorities.

5.4 Extended Suspend/Resume Arbiter

The ERSA module extends an existing read-over-program/erase preemption mechanism [26] to support read-

over-read preemption. Since the PBM module fully manages lash blocks in a priority-aware fashion in rgFTL,

when a higher-priority read should wait for a lower-priority read to complete, the higher-priority read may sufer

from an excessive delay because the lower-priority read is likely to be serviced by a block with the long read

latency. A straightforward solution to this problem may be to immediately suspend the ongoing read command

when a higher-priority read is issued. However, supporting an immediate read preemption mechanism is quite

challenging because 1) a lash chip should be modiied to support read suspend/resume commands, and 2) large

hardware resources are required for saving the transient read-internal states when suspended and restoring the

save states for resuming the suspended read.

In the ESRA module, we employ a lazy suspension mechanism when a high-priority read is issued while a

low-priority read is ongoing. The low-priority read is allowed to complete the current read step. However, if the

low-priority read requires a read retry step because of a failed read, the next read retry step is suspended, thus

being preempted for the high-priority read.

The current design of the ESRA module minimizes the amount of saved read-internal states when a read

command is preempted because only ��� � of the last failed read step needs to be saved. Furthermore, a maximum

delay of one read-retry step is acceptable for higher-priority reads because it causes a marginal increase in ����� .

Figure 13 illustrates how rgFTL handles two reads with diferent priorities with and without the ESRA module.

14To observe a steady WAF value, we deined a monitoring interval as the time it takes to perform a suicient number (e.g., 5% of total blocks)

of garbage collections (GC).

1st read 2nd read 3rd read 4th read 5th read

1st read 2nd read

1st read 2nd read

1st read 2nd read

readHof	τhigh

readL of	τlow

readL of	τlow
readHof	τhigh

3rd read 4th read 5th read

readL
start

Adjusting

Vref

ECC	success	&	
readL finish

A	delay	for	readH

Adjusting

Vref

Restoring

Vref

readL
start

readH
start

ECC	success	&	
readL finish

ECC	success	&	
readH finish

Saving

Vref

(a)

(b)

ECC	success	&	
readH finish

readH
start

readL
start

A	delay	for	readH

Fig. 13. An illustrative comparison of (a) rgFTL without the ESRA module and (b) rgFTL with the ESRA module.

ACM Trans. Storage

ReadGuard: Integrated SSD Management for Priority-Aware Read Performance Diferentiation • 21

As shown in Figure 13(a), without the ESRA module, a read command ����� of �ℎ��ℎ must wait until the ongoing

read command ����� of ���� that needs four steps ��� � adjustment (i.e., ������ = 4) to complete. In contrast, as

shown in Figure 13(b), the ESRA module waits until the ECC correction of the current ����� is complete. If the

ECC fails, suspends ����� with its last used ��� � saved and issues ����� irst. After ����� is completed with two

read steps, the ESRA module restarts ����� with the stored ��� � where its read step was suspended. Since the

FTL decides if read retries are needed (by checking if the ECC succeeds or fails), the ESRA module requires no

change to NAND lash chips. It requires only tiny DRAM space to store ��� � values (two ��� � values for �ℎ��ℎ and

���� , respectively, for supporting three priorities) of suspended read commands at the FTL level.

5.5 Other FTL Modifications

In rgFTL, a garbage collector and a wear leveler need to be modiied because these modules indirectly afect how

blocks are allocated to diferent apps. We design the garbage collector and the wear leveler in such a way that as

a result of garbage collection and wear leveling, the number of block swap operations by the BQM module does

not signiicantly increase.

Changes in Garbage Collector. The garbage collector of rgFTL is triggered based on the number of free blocks

in each subpool instead of the number of total free blocks in a conventional FTL. Although there exists a large

number of free blocks in freePool, when the number of free blocks in subP� is less than a threshold value15,

the garbage collector is invoked in the background and reclaims free blocks from usedPool. Each reclaimed

free block � is inserted to a proper subpool (not necessarily to subP�) according to its age(�). When � is not

inserted to subP� , the BA module rearranges its subpools so that subP� gets a new free block. In order to avoid

block-quality inversion during the garbage collection, when the garbage collector moves the valid pages of a

selected victim block �� to a target block �� , �� should be in the same priority group as �� . That is, if �� was

allocated to �� , �� must also be allocated to �� or must be from subP� .

Changes in Wear Leveler. A common heuristic used in a wear leveler is to move write-hot data to a more

reliable block [47ś49]. However, if the wear leveler migrates data in a priority-oblivious fashion, data migrations

by the wear leveler can cause block-quality inversion. For example, consider two apps �� and � � where the priority

of �� is higher than that of � � . If � � is write-intensive, a wear leveler may be invoked so that write-hot data of

� � can be moved to a more reliable block �� (i.e., with a smaller age(�)). If the destination block �� belonged

to a higher priority group (e.g., in subP�), the BQM module might trigger a block swap operation in the near

future to prevent block-quality inversion from �� . The block-quality inversion occurs because the block quality

of �� , which was allocated to a lower-priority app � � , can be better than that of the lowest quality block of a

higher-priority app �� .

To avoid such successive block swap operations, the wear leveler of rgFTL employs an intra-priority mode as

default. In the intra-priority mode, the wear leveler tries to minimize the diference in wear status of blocks that

belong to the same priority group (i.e., used blocks for the same ��). Compared to a conventional wear leveler, the

intra-priority mode alone may not be efective in leveling the wear status of the most-worn blocks when the

data hotness is quite diferent depending on apps. For such rare cases, the wear leveler of rgFTL supports the

inter-priority mode, which is invoked when the maximum diference in the wear status of all the blocks exceeds

a threshold value. In the inter-priority mode, the wear leveler works in a conventional way, considering the wear

diference of all the blocks, not the blocks only in the same priority group. Inevitably, the inter-priority mode will

introduce additional block-quality inversion. However, if this inversion is quickly ixed by the BQM module, the

wear leveler cannot reduce the maximum wear diference. Therefore, in the inter-priority mode, we tentatively

15We set the threshold value higher than the value that can maximize the internal parallelism of the SSD. That is, the modiied garbage

collector aims to maintain the number of free blocks in each subP as suicient for composing a superblock.

ACM Trans. Storage

22 • M. Chun et al.

disable the BQM module so that less reliable blocks can hold cold data longer, thus reducing the maximum wear

diference among all the blocks.

6 Evaluation

6.1 Evaluation Methodology

Simulation Setup. To evaluate the efectiveness of rgFTL, we used an extended version of MQSim [11], a

multi-queue SSD simulator with NVMe interface support. We extend MQSim in two directions to faithfully model

a modern NAND lash-based SSD. First, we extended the NAND lash chip model of MQSim to simulate more

realistic behavior of NAND lash blocks, based on real-device characterization of 40 3D TLC NAND lash chips.

We modiied the metadata structure of each simulated block to include multiple ������ lookup tables that are

indexed by a P/E-cycle interval and a data retention time. In the simulation setup stage, we randomly assigned a

real characterized block to each simulated block and initialized the simulated block’s ������ lookup tables based

on the characterization results of the real block. When simulating a read request to a page, the extended MQSim

irst queries the lookup tables with the current P/E cycle and retention time of the corresponding block and

performs read retry operations ������ times. Second, we modiied the transaction scheduling unit of MQSim to

support a read-over-read preemption mechanism as well as an existing read-over-program/erase preemption

mechanism [26].

Table 2 summarizes the conigurations of our evaluated SSD, which mimics a modern high-performance SSD.

We conigured the target SSD to have 2 TB capacity with eight channels, each of which has four 3D TLC lash

chips. Each chip has four planes, and each plane consists of 1,888 blocks. Each block comprises 576 16 KB pages.

We set lash operation timing parameters for ����� (without read retry), ����� , and ������ to 45 �s, 400 �s,

and 3.5 ms, respectively. We set the host interface to support a maximum bandwidth of 8.0 GB/s as speciied by

the PCI Express (PCIe) 4.0 standard [50]. A lash channel’s I/O bandwidth can support 1.6 GB/s peak bandwidth,

which is suicient to support the host interface’s peak bandwidth of eight channels.

To evaluate the efectiveness of ReadGuard, we built a ReadGuard-enabled FTL, rgFTL, and compared it to

three diferent FTLs: baseline, rgFTL−− , and rgFTL− . Baseline employs two features of modern priority-

aware FTLs: priority-aware transaction scheduling [12] and read-over-program/erase preemption [26]. The

transaction scheduler of baseline uses a strict priority-queuing mechanism. Chip-level queues are assigned a

ixed priority order based on their priority level/request type and ready operations are dispatched to the target chip

in the strict priority order of their corresponding queues. The other three FTLs, rgFTL−− , rgFTL− , and rgFTL,

are based on baseline. They employ priority-aware transaction scheduling with the read-over-program/erase

preemption mechanism. RgFTL− works in the same way as rgFTL except that no read-over-read command

preemption is supported in the ESRA module. Our objective in comparing rgFTL with rgFTL− is to evaluate the

efectiveness of each approach: the write-side optimization by the PBM module and the read-side optimization

by the ESRA module. RgFTL−− works equally to rgFTL but does not support the block grader module. Instead

of relying on the BGR module’s predicted block quality, rgFTL−− uses the most recent ������ values for each

Table 2. Evaluated SSD configurations.

Coniguration 2-TiB total capacity; 8 channels; 4 dies/channel; 4 planes/die;

1888 blocks/plane; 576 pages/block

Latencies (�s) ����� = 45; ����� = 400; ������ = 3500;

Bandwidth 8.0 GB/s external I/O bandwidth (PCIe 4.0, 4-lane);

1.6 GB/s channel I/O bandwidth

ACM Trans. Storage

ReadGuard: Integrated SSD Management for Priority-Aware Read Performance Diferentiation • 23

Table 3. Key I/O characteristics of six I/O traces.

Workload Read ratio Avg. read size (KB) Avg. write size (KB) Total read size (GB) Total write size (GB)

Ali2 0.29 20.89 13.56 111.90 276.39

Ali46 0.38 22.28 6.45 140.96 228.48

Ali81 0.43 28.42 10.72 50.79 66.66

Ali121 0.92 21.55 6.51 3288.41 272.96

Ali284 0.88 21.44 10.45 23.98 35.78

Ali295 0.45 20.99 6.48 189.96 231.13

block to predict block quality. By comparing rgFTL with rgFTL−− , we can evaluate the efectiveness of our

proposed block quality model in Section 4. Our study focuses on read performance, so all evaluated FTLs use

the I-ES scheme, which can service read operations as soon as possible, among the three suspension schemes

in [26]. When a read request collides with an ongoing erase operation, the I-ES scheme immediately terminates

the current erase step to service the read request, and the suspended erase/program loop is resumed from the

beginning.

Workloads.We conducted our experiments using six workloads obtained from large read-world I/O trace sets,

AliCloud traces [51]. The AliCloud traces consist of 1,000 block I/O traces collected from a cloud block storage

system over one month. From these trace sets, we carefully selected six representative traces with diferent read

ratios and read sizes from the trace sets. Since the AliCloud traces were collected fromHDD-based storage systems,

we increased the host-side I/O intensity by shortening the time intervals between requests by an appropriate

ratio (e.g., 1/10) to properly consider the high-performance SSD’s processing speed. Using the selected six traces,

we built ive mixed workloads where each workload combines three traces: MixA = (Ali121, Ali2, Ali284), MixB =

(Ali81, Ali284, Ali2), MixC = (Ali295, Ali46, Ali121), MixD = (Ali284, Ali81, Ali295), and MixE = (Ali81, Ali121, Ali46). In

each workload, the irst trace mimics the highest-priority app, �ℎ��ℎ , the second trace mimics the mid-priority

app, ���� , and the third trace mimics the lowest-priority app, ���� .

6.2 Performance Evaluation

Read Performance Diferentiation. We irst evaluated the efectiveness of rgFTL in supporting diferentiated

read performance among apps based on their priorities. Figure 14 shows the average SSD-level read latency ����
for each app in the ive mixed workloads. We used three SSD conigurations with diferent average block P/E

cycles (as described in Section 3.2). All the measurements were normalized to the minimum host-side read latency

(i.e., an ideal scenario where neither read retry nor waiting time exists).

We make three key observations from Figure 14. First, rgFTL clearly diferentiates ���� over each app’s I/O

priority in all the test scenarios, whereas baseline fails to do so in most scenarios. For the highest app �ℎ��ℎ ,

rgFTL provides 48.9% (25.1%), 62.2% (29.9%), and 57.1% (36.4%) shorter ���� compared to ���� (����) in the young,

adult, and old SSDs, respectively. In contrast, baseline causes longer ���� for �ℎ��ℎ compared to lower-priority

apps in many cases. For example, in MixA, ���� of �ℎ��ℎ 42.9%, and 30.7% higher than that of ���� , and ���� ,

respectively. This is because the signiicant amount of read operations of �ℎ��ℎ inMixA, incurs a large amount

of read-disturbance induced errors for read requests of �ℎ��ℎ , resulting in the large ������ . rgFTL efectively

diferentiates ���� with I/O priority, even with read-intensive �ℎ��ℎ .

Second, thanks to the capability of diferentiating the read latency across apps, rgFTL signiicantly reduces the

read latency of higher-priority apps by trading the read latency of lower-priority apps. Compared to baseline,

rgFTL decreases ���� for �ℎ��ℎ by 48.3% while increasing ���� for ���� and ���� by 22% and 45.3%, respectively, in

ACM Trans. Storage

24 • M. Chun et al.

0.0

1.0

2.0

3.0
N
o
r
m
a
li
z
e
d

	L
a
v
g 4.0

r
g
F
T
L
-
-

r
g
F
T
L
-

b
a
s
e
l
i
n
e

r
g
F
T
L

r
g
F
T
L
-
-

r
g
F
T
L
-

b
a
s
e
l
i
n
e

r
g
F
T
L

r
g
F
T
L
-
-

r
g
F
T
L
-

b
a
s
e
l
i
n
e

r
g
F
T
L

r
g
F
T
L
-
-

r
g
F
T
L
-

b
a
s
e
l
i
n
e

r
g
F
T
L

r
g
F
T
L
-
-

r
g
F
T
L
-

b
a
s
e
l
i
n
e

r
g
F
T
L

r
g
F
T
L
-
-

r
g
F
T
L
-

b
a
s
e
l
i
n
e

r
g
F
T
L

MixA MixB MixC MixD MixE Avg.

τhigh τmid τlow

0.0

2.0

4.0

6.0

N
o
r
m
a
li
z
e
d

	L
a
v
g 8.0

r
g
F
T
L
-
-

r
g
F
T
L
-

b
a
s
e
l
i
n
e

r
g
F
T
L

r
g
F
T
L
-
-

r
g
F
T
L
-

b
a
s
e
l
i
n
e

r
g
F
T
L

r
g
F
T
L
-
-

r
g
F
T
L
-

b
a
s
e
l
i
n
e

r
g
F
T
L

r
g
F
T
L
-
-

r
g
F
T
L
-

b
a
s
e
l
i
n
e

r
g
F
T
L

r
g
F
T
L
-
-

r
g
F
T
L
-

b
a
s
e
l
i
n
e

r
g
F
T
L

r
g
F
T
L
-
-

r
g
F
T
L
-

b
a
s
e
l
i
n
e

r
g
F
T
L

MixA MixB MixC MixD MixE Avg.

0.0

3.0

6.0

9.0

N
o
r
m
a
li
z
e
d

	L
a
v
g 12.0

r
g
F
T
L
-
-

r
g
F
T
L
-

b
a
s
e
l
i
n
e

r
g
F
T
L

r
g
F
T
L
-
-

r
g
F
T
L
-

b
a
s
e
l
i
n
e

r
g
F
T
L

r
g
F
T
L
-
-

r
g
F
T
L
-

b
a
s
e
l
i
n
e

r
g
F
T
L

r
g
F
T
L
-
-

r
g
F
T
L
-

b
a
s
e
l
i
n
e

r
g
F
T
L

r
g
F
T
L
-
-

r
g
F
T
L
-

b
a
s
e
l
i
n
e

r
g
F
T
L

r
g
F
T
L
-
-

r
g
F
T
L
-

b
a
s
e
l
i
n
e

r
g
F
T
L

MixA MixB MixC MixD MixE Avg.

Child	SSD

Young	SSD

Old	SSD

τhigh τmid τlow

τhigh τmid τlow

Fig. 14. Comparisons of normalized average host-side latency ���� values for five workloads on three SSDs.

the old SSD. This clearly shows that rgFTL enables better utilization of large-capacity SSDs shared by multiple

ACM Trans. Storage

ReadGuard: Integrated SSD Management for Priority-Aware Read Performance Diferentiation • 25

applications, providing higher QoS performance for latency-sensitive apps by sacriicing the performance of

lower-priority apps (likely less latency-sensitive).

r
g
F
T
L
-
-

r
g
F
T
L
-

r
g
F
T
L

MixA MixB MixC MixD MixE Avg.

τhigh τmid τlow

MixA MixB MixC MixD MixE Avg.

MixA MixB MixC MixD MixE Avg.

Child	SSD

Young	SSD

Old	SSD

τhigh τmid τlow

τhigh τmid τlow

0.0

0.5

1.5

2.0

2.5
N
o
r
m
.	p
9
9

	la
te
n
c
y

1.0

0.0

0.5

1.5

2.0

2.5

N
o
r
m
.	p
9
9

	la
te
n
c
y

1.0

0.0

0.5

1.5

2.0

2.5

N
o
r
m
.	p
9
9

	la
te
n
c
y

1.0

r
g
F
T
L
-
-

r
g
F
T
L
-

r
g
F
T
L

r
g
F
T
L
-
-

r
g
F
T
L
-

r
g
F
T
L

r
g
F
T
L
-
-

r
g
F
T
L
-

r
g
F
T
L

r
g
F
T
L
-
-

r
g
F
T
L
-

r
g
F
T
L

r
g
F
T
L
-
-

r
g
F
T
L
-

r
g
F
T
L

r
g
F
T
L
-
-

r
g
F
T
L
-

r
g
F
T
L

r
g
F
T
L
-
-

r
g
F
T
L
-

r
g
F
T
L

r
g
F
T
L
-
-

r
g
F
T
L
-

r
g
F
T
L

r
g
F
T
L
-
-

r
g
F
T
L
-

r
g
F
T
L

r
g
F
T
L
-
-

r
g
F
T
L
-

r
g
F
T
L

r
g
F
T
L
-
-

r
g
F
T
L
-

r
g
F
T
L

r
g
F
T
L
-
-

r
g
F
T
L
-

r
g
F
T
L

r
g
F
T
L
-
-

r
g
F
T
L
-

r
g
F
T
L

r
g
F
T
L
-
-

r
g
F
T
L
-

r
g
F
T
L

r
g
F
T
L
-
-

r
g
F
T
L
-

r
g
F
T
L

r
g
F
T
L
-
-

r
g
F
T
L
-

r
g
F
T
L

r
g
F
T
L
-
-

r
g
F
T
L
-

r
g
F
T
L

Fig. 15. Comparisons of normalized p99 host-side latency values for five workloads on three SSDs.

ACM Trans. Storage

26 • M. Chun et al.

N
o

r
m

a
li

z
e

d
N
r
e
tr
y

0.0

0.6

0.2

1.0
0.8

0.4

τhigh τmid τlow τhigh τmid τlow
τhigh τmid τlow

Child stage Young stage Old stage

Fig. 16. Per-app block-level ������ variations in rgFTL.

Third, read-over-read preemption provides considerable beneits for rgFTL to further improve the performance

of higher-priority apps. While rgFTL− (without read-over-read preemption) also signiicantly outperforms

baseline in all test scenarios, rgFTL further reduces ���� of �ℎ��ℎ compared to rgFTL− , especially when 1)

the SSD gets aged, and 2) the workload is read dominant (e.g., 12.2% reduction forMixC, which ���� is highly

read-intensive, in the old SSD). This is because read retry can signiicantly increase the read latency as the block

gets old, which, in turn, can cause a high-priority read to be blocked for a long time by a lower-priority read in

rgFTL− .

Read Tail Latency.We evaluate the impact of ReadGuard on the tail latency of SSD read requests, which is a

critical performance factor to many data-intensive applications [8, 52ś56]. Figure 15 compares the 99th-percentile

read latency (p99) of each app. All values in Figure 15 were normalized to the corresponding p99 value of each

app in baseline.

We make two key observations from Figure 15. First, rgFTL signiicantly reduces the tail latency of �ℎ��ℎ
compared to baseline, by 40.9%, 52.7%, and 55.5% on average in the young, adult, and old SSDs, respectively.

Although suspended reads increase the tail latency of ���� , latency-sensitive apps have stricter QoS requirements

than throughput-oriented apps. Therefore, rgFTL can be a practical solution to meet the tail latency requirements

of modern storage systems. Second, while efective in read-performance diferentiation, rgFTL−− is inefective in

reducing tail latency. The tail latency improvement of rgFTL−− over baseline is only 16.3%, 19.7%, and 23.5%

on average across all workloads in the young, adult, and old SSDs, respectively. This is because the recent ������

value of a block is easily outdated (e.g., only one week retention time [24]) in modern NAND lash memory,

thus rgFTL−− cannot prevent large ������ for cold data of �ℎ��ℎ . This shows that the ������ prediction failure

signiicantly afects SSD read tail latency, therefore, an accurate block-quality model is necessary to satisfy the

QoS requirements of modern SSDs.

������ distributions. To better understand how rgFTL outperforms baseline, we evaluate how rgFTL changes

������ in apps with diferent I/O priorities. For this evaluation, we use the same workload in Figure 7. Figure 16

shows ������ values per read for three apps inMixA. We normalize all values in Figure 16 to the maximum ������

value. We observe that the higher the app’s I/O priority, the lower the ������ value. This clearly shows that the

PBM module in rgFTL successfully manages block quality (i.e., ������) in a read-latency-centric fashion over the

app priority, whereas a large block-quality inversion occurs in baseline (cf. Figure 7). Although the retention

time of most blocks used for �ℎ��ℎ is quite long (with few update requests), the read latency of �ℎ��ℎ’s blocks was

managed to be much lower than that of ���� and ���� .

Based on our observations, we conclude that ReadGuard is an efective solution to better meet I/O performance

requirements inmodern computing systemswheremultiple appswith diferent I/O priorities share a large-capacity

SSD.

ACM Trans. Storage

ReadGuard: Integrated SSD Management for Priority-Aware Read Performance Diferentiation • 27

6.3 Comparison to Prior Work

Prior works attempt to mitigate the overhead of frequent read-retry operations in modern NAND lash memory by

1) minimizing ������ by deciding the near-optimal ��� � eiciently [20, 23, 25, 57ś59] and 2) reducing the latency

of the read-retry operation itself [24, 60]. Because existing read-retry mitigation techniques reduce read-latency

variations caused by frequent read-retry operations, their application to an FTL may reduce the eiciency of our

proposal for read performance diferentiation.

To evaluate the efectiveness of our proposal when combined with existing read-retry optimization techniques,

we built two FTLs, baseline+ and rgFTL+. Based on baseline, baseline+ employs two read-retry mitigation

techniques [20, 24]. RgFTL+ is an FTL that enables ReadGuard based on baseline+. Process similarity-aware

optimization [20] reduces the number of retry steps by reusing ��� � values from previous read-retry operations

on pages with similar error characteristics to the target page. Pipelined and adaptive read-retry [24] reduces the

latency of a read-retry operation by pipelining consecutive retry steps using the existing cache read command [61]

and dynamically reducing the chip-level read latency by exploiting the ECC margin of the inal read-retry step. In

this evaluation, we characterized ������ values using the process similarity-aware ��� � adjusting technique and

constructed each simulated block’s������ lookup table in both FTL. Figure 17 compares the average SSD-level read

latency ���� of three apps in two FTLs for ive workloads on three SSDs. All the measurements were normalized

to the minimum host-side read latency.

We make two major observations. First, although the applied read-retry mitigation techniques successfully

reduce ���� of three apps, they fail to eliminate the overhead of read-retry, thus baseline+ fails to diferentiate

read performance over each app’s priority in most scenarios. For example, in MixA, ���� of �ℎ��ℎ is 23.3%, 25.9%,

and 29.3% higher than that of ���� in young, adult, and old SSDs, respectively. Second, ReadGuard is still efective

in diferentiating ���� with I/O priority and reducing ���� of �ℎ��ℎ , even when an FTL adopts existing read-retry

mitigation techniques. RgFTL+ reduces ���� of �ℎ��ℎ by 22.5% (5.9%), 23.4% (20.4%), and 30.1% (23.4%) on average

compared to ���� (����) in three SSDs. Additionally, �ℎ��ℎ’s ���� in baseline+ is 26.6% shorter on the old SSD

than that of rgFTL+.

Future generation NAND lash memory is expected to increase the frequency and number of read-retry

operations, even with advanced mitigation techniques, due to its high error-prone characteristics resulting from

increased density. Therefore, we believe that our proposal will be quite promising in satisfying the ever-increasing

demand for I/O performance of latency-critical apps in future-generation SSDs.

6.4 Intra-Block Latency Variation

The current version of ReadGuard only considers variations in the ������ values between blocks. However, in

modern NAND lash memory, the ������ values can vary across pages within a block due to various reasons, such

as read-disturbance patterns, and process variations. [19, 20, 62]. However, we believe that inter-block variation

in ������ values considered in ReadGuard is much more signiicant than intra-block variation in most operating

conditions.

To validate our claim, we evaluated the ������ values for both the worst and best pages in the target block for

every page read request in each workload. We then quantiied inter-block variation as the diference between

the worst pages across all blocks, and intra-block variation as the diference between the best and worst pages

in the target block when the target page is read. Figure 18 compares the maximum intra-block and inter-block

variation inMixA for four SSD lifetime conigurations. From the results, we observed that the maximum inter-

block variation is signiicantly larger than the maximum intra-block variation in all initial P/E cycle settings.

Furthermore, as the SSD ages, the disparity between these two variations increases. For example, when the initial

P/E values are set to 3500, the diference in ������ values between the best and worst blocks may reach 16, while

the diference between the best and worst pages within the target block may be only up to 3. This is because (i) all

ACM Trans. Storage

28 • M. Chun et al.

0.0

1.0

2.0

3.0
N
o
r
m
a
li
z
e
d

	L
a
v
g 5.0

b
a
s
e
l
i
n
e

r
g
F
T
L

b
a
s
e
l
i
n
e

r
g
F
T
L

b
a
s
e
l
i
n
e

r
g
F
T
L

b
a
s
e
l
i
n
e

r
g
F
T
L

b
a
s
e
l
i
n
e

r
g
F
T
L

b
a
s
e
l
i
n
e

r
g
F
T
L

MixA MixB MixC MixD MixE Avg.

τhigh τmid τlow

0.0

2.0

3.0

4.0

N
o
r
m
a
li
z
e
d

	L
a
v
g 5.0

MixA MixB MixC MixD MixE Avg.

0.0

1.0

2.0

4.0

N
o
r
m
a
li
z
e
d

	L
a
v
g 5.0

MixA MixB MixC MixD MixE Avg.

Child	SSD

Young	SSD

Old	SSD

τhigh τmid τlow

τhigh τmid τlow

b
a
s
e
l
i
n
e

r
g
F
T
L

b
a
s
e
l
i
n
e

r
g
F
T
L

b
a
s
e
l
i
n
e

r
g
F
T
L

b
a
s
e
l
i
n
e

r
g
F
T
L

b
a
s
e
l
i
n
e

r
g
F
T
L

b
a
s
e
l
i
n
e

r
g
F
T
L

b
a
s
e
l
i
n
e

r
g
F
T
L

b
a
s
e
l
i
n
e

r
g
F
T
L

b
a
s
e
l
i
n
e

r
g
F
T
L

b
a
s
e
l
i
n
e

r
g
F
T
L

b
a
s
e
l
i
n
e

r
g
F
T
L

b
a
s
e
l
i
n
e

r
g
F
T
L

1.0

4.0

3.0

Fig. 17. The efectiveness of ReadGuard when combined with two existing read-retry mitigation schemes [20, 24].

pages in a block are written together in a short period and (ii) reading a page disturbs all other pages in the same

block, which limits intra-block latency variation. In contrast, pages in diferent blocks can experience signiicantly

ACM Trans. Storage

ReadGuard: Integrated SSD Management for Priority-Aware Read Performance Diferentiation • 29

diferent retention times, read-disturbance efects, and block wear, thereby introducing high inter-block latency

variation. As intra-block variation in the ������ values is signiicantly smaller than inter-block variation, we

concluded that ReadGuard, which focuses primarily on inter-block variation, is an eicient approach with lower

overhead.

6.5 Overhead Evaluation

Impact of Block Migration Operations. To prevent block-quality inversion among apps, rgFTL requires to

perform additional block migration operations. When the additional writes in rgFTL collide with user-level

writes, the write latency of rgFTLmay be degraded. Furthermore, these additional writes incur additional garbage

collection invocations, thereby increasing the WAF value of SSD (i.e., more erase operations).

To evaluate the overhead of block migration operations in rgFTL, we measure the average SSD-level write

latency of three app WAF values in each workload. Figure 19(a) compares the average write latency for ive

workloads in rgFTL and baseline. All values in Figure 19(a) were normalized to the average write latency in

baseline. As shown in Figure 19(a), extra block migration overhead is marginal without afecting the SSD-level

write latency. Even in the most write-intensive scenario (i.e., MixC), the average write latency of three apps

was increased by 5.9% over baseline. Block migration operations from the BQM module do not have to be

handled immediately; most block migration operations can be safely handled in the background with the lowest

priority, without colliding with user write requests. A small increase in the write latency mostly comes from extra

(foreground) garbage collection that is needed from additional block migration writes from the BQM module.

Figure 19(b) shows how data migration operations in rgFTL afect the WAF value of the old SSD. For this

evaluation, the maximum proportion of additional writes in the WM module is set to 10% of the total internal

writes of the SSD.16 As shown in the igure, the increase in the WAF value in rgFTL is up to 7.9% compared

to baseline. More erase operations are unavoidable in rgFTL because the proposed block-quality inversion

management technique aims to reduce the read latency of �ℎ��ℎ by trading extra writes. However, by dynamically

adjusting �ℎ��ℎ and ���� (used to detect quality-inverted blocks in �ℎ��ℎ and ����) by theWMmodule, the increased

WAF value can be suppressed to have a negligible impact on the lifetime of the SSD.

Impact of SSD Capacity. We analyze the impact of SSD capacity on our ReadGuard’s eiciency. First, we

evaluate the eiciency of ReadGuard under varying SSD capacity (within a range of ⟨0.5 TB, 1 TB, 2 TB, 4 TB⟩).

We observe only trivial variation in the reduction of ���� of �ℎ��ℎ over baseline, e.g., less than 3% standard

16As explained in Section 5.3, 10% was selected based on our observations from the device characterization study.

M
a
x
im
u
m

	d
if
f.

	in
	N
re
tr
y

(a) (b)

0

5

10

15

20

0 500 15003500

0

5

10

15

20

0 500 15003500

M
a
x
im
u
m

	d
if
f.

	in
	N
re
tr
y

Initial NP/E Initial NP/E

Fig. 18. Comparisons of maximum diference in (a) intra-block variation and (b) inter-block variation.

ACM Trans. Storage

30 • M. Chun et al.

deviation across all workloads and SSD capacities. Second, we compare the space overhead of ReadGuard under

various SSD capacity settings. The BGR module requires additional memory space to maintain ive per-block

parameters. Our simulated 2 TB SSD consists of 241,664 blocks (8 channels × 4 dies/channel × 4 planes/die ×

1,888 blocks/plane), so the required memory space is around 5 MB. Therefore, assuming the block size is not

changed, the space overhead of ReadGuard is proportional to the total number of blocks in SSDs, e.g., 2.5 MB for

1 TB SSD, and 10 MB for 4 TB SSD. Modern SSDs commonly have 0.1% DRAM module of total capacity (e.g., 2

GB DRAM for a 2 TB SSD), so the space overhead of ReadGuard is negligible. Furthermore, as the bit density of

the lash chip increases, the block size is expected to increase. Table 4 shows how the size of a single block has

been changed in modern 3D NAND lash memory. As shown in Table 4, the block size has increased by 2.6 times

in 4 years. Therefore, we believe that the space overhead of our proposal will be negligible in future high-density

SSDs composed of large blocks.

Based on the analysis, we conclude that ReadGuard eiciently supports read performance diferentiation with

low cost for wide range capacity.

Lifetime Impact. It is a reasonable concern that an SSD with rgFTLmay have a shorter lifetime than the existing

SSD because the wear leveler of rgFTL only focuses on lash blocks that belong to the same priority group in the

intra-priority mode. To evaluate the performance of the wear leveler of rgFTL, we measure the ��/� values of

lash blocks at diferent times while iteratingMixD workload. For this evaluation, we limited the total capacity of

the simulated SSD to 32 GB to enable faster experiments. The wear leveler of rgFTL is based on a widely used

dual-pool algorithm [67]. The wear-leveling threshold value (i.e., allowed maximum diference in ��/� values of

managed blocks) is set to 30, and the threshold value to invoke the inter-priority mode is 70.

Figure 20 visualizes the distributions of all ��/� values at four distinct times, �0, �1, �2, and �3. The ��/� values of

lash blocks are sorted according to the priority of their stored data. Initially, the wear leveler of rgFTL operates

0

0.3

0.6

0.9

1.2

M
ix
A

M
ix
B

M
ix
C

M
ix
D

M
ix
E

A
v
g
.

N
o
r
m
.	w
r
it
e

	la
te
n
c
y

W
A
F

	in
c
re
a
s
e

0%

2%

4%

6%

8%

10%

M
ix
A

M
ix
B

M
ix
C

M
ix
D

M
ix
E

A
v
g
.

(a) (b)

Fig. 19. Comparisons of (a) average write latency and (b) WAF values on the old SSD.

Table 4. Changes in the block size over time in modern 3D NAND flash memory.

Year No. of pages per block Block size (KB)

2018 [63] 1024 16384

2020 [64] 1472 23552

2021 [65] 2040 32640

2022 [66] 2816 45056

ACM Trans. Storage

ReadGuard: Integrated SSD Management for Priority-Aware Read Performance Diferentiation • 31

as the intra-priority mode, aimed at minimizing the diference in wear status of blocks belonging to the same

priority group. At �0, when 2.71 TB of writes have been completed, the maximum ��/� diferences of the same

priority blocks are properly managed, but the maximum diference in the ��/� values of all blocks exceeds the

threshold value. Since the wear leveler operates as the inter-priority mode after �0, the maximum diference of

all blocks gradually decreases. The wear-leveler of rgFTL resumes its intra-priority mode operation once the

maximum ��/� diferences of all blocks are less than the threshold value (e.g., at �3). Our evaluation shows that

the wear leveler of rgFTL, which works on two levels, can adequately handle the lifetime side efect of rgFTL.

When the maximum diference in ��/� values of all blocks increased due to the distinctive I/O pattern depending

on apps, the inter-priority mode wear-leveling could efectively (and quickly) reduce the maximum diference in

��/� values of all blocks.

7 Related Work

Priority-Aware OS I/O Stack. Various techniques have been proposed at diferent OS I/O stack layers to

diferentiate I/O QoS levels [8ś10, 68ś71]. For example, the priority inversion problem was addressed at the ile

system level [68] and at the page cache level [9]. Researchers have proposed solutions at the lower layers of the

I/O stack, such as the block queue layer [69ś71], and at the device driver layer [8, 72]. However, these approaches

have two limitations in diferentiating the I/O performance of modern high-performance SSDs: (i) they do not

consider the heterogeneity of lash device-level read latency, and (ii) modern high-performance host interface

protocols, such as NVMe [72], bypass the I/O scheduler at the OS I/O stack to reduce latency.

I/O Scheduling at SSD Controller. Previous studies [12, 73, 74] have proposed SSD controller-level scheduling

techniques for NVMe SSDs to address the lack of an I/O scheduling mechanism in the modern OS I/O stack

layers. These sophisticated scheduling mechanisms were designed to ensure fairness by balancing interference

P
/
E

	c
y
c
le
s

100

140

180

260

Flash	blocks

220

��/����=	131 ��/���� =	61��/����
=	84.74

High Mid Low

Flash	blocks

P
/
E

	c
y
c
le
s

100

140

180

260

220

High Mid Low

Flash	blocks

P
/
E

	c
y
c
le
s

100

140

180

260

220

High Mid Low

Flash	blocks

P
/
E

	c
y
c
le
s

100

140

180

260

220

High Mid Low

t
0
(inter‐priority	WL	on) t

1

t
2

t
3
(inter‐priority	WL	off)

��/����=	134 ��/���� =	72��/����
=	90.38

��/����=	134 ��/���� =	93��/����
=	108.57

��/����=	134 ��/���� =	104��/����
=	118.04

Fig. 20. ��/� distributions of flash blocks at four diferent times, �0, �1, �2, and �3.

ACM Trans. Storage

32 • M. Chun et al.

efects between diferent apps in a shared SSD. Although the primary goal of these mechanisms difers from our

proposal, latency-centric block management can be integrated with advanced scheduling techniques to improve

their overall efectiveness. When apps with diferent I/O patterns share a single SSD, block-level latency variation

may lead to unfairness among apps. For example, when two read-dominant apps with diferent I/O intensities

share a single SSD, the high-intensity app unfairly slows down the low-intensity app. This is because a large

number of reads from the high-intensity app cause frequent read disturbances, reducing the quality of lash

blocks shared by both apps. ReadGuard can prevent unintended degradation of block-level read latency for one

app due to another by (i) allocating separate free blocks to each app and (ii) managing app-level block quality to

ensure fairness. For example, if an app has an average block-level read latency of 80 us when running alone, the

PBM module in the shared SSD is responsible for maintaining that latency, which improves fairness.

Read Retry Mitigation. If read-retry operations are infrequent and the average ������ value is less than one,

our key assumption that block-level read latency varies is not valid. Therefore, existing read-retry mitigation

techniques for modern NAND lash memory [20, 23ś25, 57ś60, 75, 76] can be considered as alternative solutions

for read-performance diferentiation. Unfortunately, most existing mitigation techniques are not generally

applicable for this purpose. For example, Shim et al. [20] proposed an efective scheme that can reduce ������

when horizontally adjacent wordlines within the same lash block are successively read. However, this scheme

does not eliminate large variations in ������ among diferent blocks. Li et al. [23, 25] proposed another mitigation

technique that employs additional sentinel cells as a proxy of the error status of a lash page. However, this scheme

is diicult to be used when the space constraint is tight (e.g., in cost-sensitive SSDs) because it requires about

10% more spare area per wordline to properly work. Park et al. [24] proposed a pipeline and adaptive read-retry

scheme that reduces read-retry latency by utilizing the cache read command and trading ECC margin to decrease

page-sensing latency. Although this scheme signiicantly reduces read-retry overhead, it focuses on reducing the

latency of each read-retry step rather than the number of read-retries. As a result, our assumption that there is

signiicant block-level read latency variation remains valid even with this scheme. Prior works [75, 76] optimized

the decoding process of modern LDPC decoders to reduce soft decoding’s long tail latency. However, this scheme

does not eliminate large diferences in ������ between diferent blocks due to large latency variations in the

number of read voltages of each soft level in the soft decoding process.

Error Prediction Models for Modern NAND Flash Memory. Several works have proposed error prediction

models for modern 3D NAND lash memory [19, 21, 22]. Table 5 compares representative models to our proposal

in terms of how comprehensively they considered various error sources of modern NAND lash memory. The

new error model we develop in this work makes three key contributions over existing error models. First, it

uses an accurate metric for lash wear rather than the traditional P/E-cycle count to relect the efect of ambient

temperature and inter-block variation on errors. Second, it comprehensively considers major error sources

including retention loss and program/read disturbance. Third, it is rigorously validated using real 3D NAND

lash chips.

Table 5. A comparison of the existing online RBER models.

Source HeatWatch [22] PV [19] RealWear [21] Our proposal

P/E cycle O O O O

Retention loss O O X O

Inter-block variation X X O O

Intra-block variation X O X X

Read disturbance X X X O

Ambient temperature O X O O

ACM Trans. Storage

ReadGuard: Integrated SSD Management for Priority-Aware Read Performance Diferentiation • 33

SSD-Level Read Performance Diferentiation. To the best of our knowledge, this work is the irst work to

support block-level read performance diferentiation. A recent work [77] proposes an adaptive read reclaim

scheme based on the hint about expected read performance data from host apps. Even though the prior work

aims to enhance SSD lifetime (but not to improve I/O performance) by preventing unnecessary read reclaims, its

key idea (i.e., sending latency requirement hints) can be used for read performance diferentiation. For example,

one can diferentiate the read performance of two applications ���� and ���� by setting their read-latency

requirements diferently, e.g., 100 us for ���� and 1 ms for ���� ; the SSD controller then ensures lower read

latency for ���� by more frequently performing read reclaim for ���� if a block’s read latency becomes higher

than 100 us. However, such an approach alone would be likely to introduce signiicant performance and lifetime

overheads unless taking into account the block-quality variations as in ReadGuard. This is because, without

considering the block quality, a latency-sensitive application’s data can be stored in low-quality blocks, which

inevitably causes early read reclaim to meet a high read-latency requirement. Note that such early read reclaims

can occur (i) repeatedly by failing to use high-quality blocks and (ii) more frequently if the data of diferent

applications is not stored separately as in ReadGuard.

8 Discussion

We believe that broad-area apps that require strict latency-based service-level agreements (SLAs) [78], ranging

from traditional database apps to future machine learning apps, will beneit considerably from ReadGuard in

shared storage systems. ReadGuard ensures that data from these apps is stored on higher-quality lash blocks

than data from latency-insensitive apps (i.e., throughput-oriented apps). Furthermore, ReadGuard’s capabilities

can be extended to provide service diferentiation [79] within a database application by selectively prioritizing

more important users’ data over others in order to protect the formal from performance degradation. Emerging

ML apps are an additional promising use case for ReadGuard for two reasons. First, because the input data size of

emerging ML apps, such as embedding tables in recommendation systems, is constantly increasing, storing all

of this data in DRAM is not feasible [80]. As a result, moving input data from DRAM to large-scale SSDs is a

promising solution for future ML apps. Second, some ML apps require strict SLAs to provide cloud-based ML

capabilities to users [3]. ReadGuard can mitigate SLA violations resulting from the inherently slower performance

of SSDs compared to DRAM by reducing both average and tail read latencies for latency-critical ML applications.

Although ReadGuard efectively diferentiates read performance based on app I/O priority inmodern lash-based

storage systems, the current version of ReadGuard also has three limitations: (i) additional writes caused by block

migration, and (ii) it does not account for intra-block read latency variation, and (iii) it may afect the utilization of

plane-level parallelism. Compared to a baseline FTL, additional writes are performed in rgFTL for block migration

operations to ensure priority order in block quality among diferent priorities. These additional writes may

degrade (i) the lifetime of NAND lash memory and (ii) user-level write latency. The impact of additional writes

on the lifetime of NAND lash memory can be minimized by carefully adjusting the WM module’s predeined

threshold value, which determines the block-quality inversion condition. For example, for error-prone NAND

lash memory with a 1% P/E cycle margin, the predeined threshold value should be 0.01. With this threshold

value, rgFTL may allow the most dynamic block-quality inversion after block allocation, but high-priority apps

still beneit from priority-aware block allocation. In contrast, common NAND lash memory with a considerable

P/E cycle margin, such as the NAND lash memory used in our study, can support stricter priority-based read

performance diferentiation by leveraging the margin with additional block migration operations. To minimize

the impact of block migration operations on user-perceived write latency, rgFTL prioritizes block migration

operations lower than user writes. As shown in Figure 19(a), this simple solution is quite eicient under most I/O

patterns, including write-intensive workloads.

ACM Trans. Storage

34 • M. Chun et al.

The current version of ReadGuard only considers inter-block read latency variations. However, in modern

NAND lash memory, the read latency can vary across pages within a block due to various reasons, such as

read-disturbance patterns, process variations, and target page types (i.e., LSB/CSB/MSB pages) [19, 20, 62]. Even

though it is ideal to derive a more comprehensive model that considers such intra-block latency variation as well,

we believe that our ReadGuard is also highly efective due to two reasons. First, inter-block latency variation

considered in ReadGuard is much more signiicant than intra-block latency variation in many cases, as shown

in Figure 18. This is because all pages in a block have similar retention times and read-disturbed counts, while

pages in diferent blocks may experience signiicant diferences in retention times and read-disturbance efects.

Furthermore, it is common practice to minimize the sensing-time variation across page types (e.g., reading an

LSB/CSB/MSB page requires 2/3/2 sensing operations), which limits intra-block latency variation. Second, it is

challenging to consider intra-block latency variation in a cost-eicient manner due to the signiicant metadata

overhead to keep track of each page’s status. The current design of ReadGuard only requires small additional

space (e.g., 5 MB for a 2 TB SSD) to keep per-block metadata, which makes it a highly cost-efective solution.

ReadGuard may afect the utilization of plane-level parallelism for read requests. To utilize plane-level par-

allelism, operations on multiple planes in a single chip must have the same page number. Pages with aligned

page addresses that can be read concurrently from multiple planes may need to be read separately after block

migration. This is because extra block migration operations performed by the PBM module may change the page

address of copied data, as a block migration operation only copies valid data from the target block. However,

as shown in our experimental results, the impact of additional block migration operations on read latency is

negligible, since a baseline FTL already frequently invokes block migration operations for garbage collection and

wear leveling. Furthermore, as lash manufacturers have recently proposed advanced lash architectures with

independent row and block decoders for each plane [81, 82], we believe that the limitations of our proposal will

be overcome in modern lash memory systems.

9 Conclusions

We have presented ReadGuard, an integrated priority-aware lash management technique that achieves read

performance diferentiation based on the I/O priority of apps in modern lash-based storage systems. ReadGuard

fully manages lash blocks in a read-latency-centric fashion at the lash block level. To precisely distinguish lash

blocks with diferent quality levels, ReadGuard proposed a novel read-latency estimator �� (�) that accurately

predicts ������ of a lash block �. By leveraging �� (�), we built rgFTL, a ReadGuard-enabled FTL, which ensures

that higher-quality blocks are used for higher-priority apps. Our experimental results show that rgFTL efectively

supports diferentiated read performance among apps with diferent priorities without negatively afecting the

SSD lifetime.

The current version of rgFTL can be further improved in several directions. For example, it manages lash

blocks in a priority-aware fashion based on the longest ����� of a lash block. Considering the well-known

process variations among diferent WLs within a lash block, extending �� (�) to a iner-grained level than a lash

block level (e.g., sub-block level) may allow more accurate tracking of read latency variations. As a solution for

guaranteed I/O QoS level support, it may be an interesting future direction to extend rgFTL to support strict

read diferentiation using a ine-grained read latency marker.

Appendix

This appendix contains our comprehensive device characterization results for 160 real 3D TLC NAND lash chips.

We measured the number of retry steps (������) of the worst page in a block for more than 2,560 blocks that are

evenly selected from the 160 NAND lash chips under various operating conditions. We set six groups by varying

operating conditions for this evaluation: (a) fresh, (b) after 1-week retention time, (c) after 1-month retention time,

ACM Trans. Storage

ReadGuard: Integrated SSD Management for Priority-Aware Read Performance Diferentiation • 35
	 	 	 	 	 	 	 	 	 	

0

5

20

15

10

N
re
tr
y
o
f	a

	b
lo
c
k

0

5

20

15

10

N
re
tr
y
o
f	a

	b
lo
c
k

0

5

20

15

10

N
re
tr
y
o
f	a

	b
lo
c
k

0

5

20

15

10

N
re
tr
y
o
f	a

	b
lo
c
k

0

5

20

15

10

N
re
tr
y
o
f	a

	b
lo
c
k

0

5

20

15

10

N
re
tr
y
o
f	a

	b
lo
c
k

0.5K 1.5K 3.5K

NP/E

0.5K 1.5K 3.5K

NP/E

0.5K 1.5K 3.5K

NP/E

0.5K 1.5K 3.5K

NP/E

0.5K 1.5K 3.5K

NP/E

0.5K 1.5K 3.5K

NP/E

(a) (b) (c)

(d) (e) (f)

Proportion
0 1

Fig. 21. Distributions of ������ under various operating conditions: (a) fresh, (b) ater 1-week retention time, (c) ater 1-month

retention time, (d) ater 100 block read operations, (e) ater 1-week retention time with 100 block read operations, and (f)

ater 1-month retention time with 100 block read operations.

(d) after 100 block read operations, (e) after 1-week retention time with 100 block read operations, and (f) after

1-month retention time with 100 block read operations. For the fresh group, we measured the ������ value (i.e.,

block quality) of blocks immediately after programming, resulting in no retention time or read disturbance efect

on all pages. To eiciently mimic the read disturbance efect on all pages in a block, we repeated a block read

operation, which is a custom command for characterization that reads all pages sequentially. Figure 21 shows

the probability of occurrence of diferent numbers of retry steps (in green scale) for six groups. A box at (x, y)

represents the probability that a read requires a read-retry operation with y retry steps under x P/E cycles. From

the results, we observed that (1) inter-block variation in ������ values exists even under the same conditions, and

(2) signiicant inter-block variation in ������ values between fresh blocks and blocks after long retention time

with read disturb efect, as shown in groups (a) and (f). We hope that this appendix will help readers understand

the signiicant inter-block latency variation of modern NAND lash memory, which is the primary motivation for

our study, as well as encourage future research.

ACM Trans. Storage

36 • M. Chun et al.

References

[1] Mohd Tajammul and R Parveen. 2021. Cloud Storage in Context of Amazon Web Services. International Journal of All Research Education

and Scientiic Methods 10, 01 (2021), 442ś446.

[2] Gui Huang, Xuntao Cheng, Jianying Wang, Yujie Wang, Dengcheng He, Tieying Zhang, Feifei Li, Sheng Wang, Wei Cao, and Qiang Li.

2019. X-Engine: An Optimized Storage Engine for Large-Scale E-Commerce Transaction Processing. In Proceedings of the International

Conference on Management of Data (SIGMOD).

[3] Xuan Sun, Hu Wan, Qiao Li, Chia-Lin Yang, Tei-Wei Kuo, and Chun Jason Xue. 2022. RM-SSD: In-storage computing for large-scale

recommendation inference. In Proceedings of the IEEE International Symposium on High-Performance Computer Architecture (HPCA).

[4] Hu Wan, Xuan Sun, Yufei Cui, Chia-Lin Yang, Tei-Wei Kuo, and Chun Jason Xue. 2021. FlashEmbedding: Storing Embedding Tables in

SSD for Large-Scale Recommender Systems. In Proceedings of the ACM SIGOPS Asia-Paciic Workshop on Systems (APSys).

[5] Thomas Anderson, Adam Belay, Mosharaf Chowdhury, Asaf Cidon, and Irene Zhang. 2022. Treehouse: A Case for Carbon-Aware

Datacenter Software. arXiv (2022).

[6] Yichao Jin, Yonggang Wen, and Qinghua Chen. 2012. Energy Eiciency and Server Virtualization in Data Centers: An Empirical

Investigation. In Proceedings of the IEEE INFOCOM Workshops (INFOCOM).

[7] David Lo, Liqun Cheng, Rama Govindaraju, Luiz André Barroso, and Christos Kozyrakis. 2014. Towards Energy Proportionality for

Large-Scale Latency-Critical workloads. ACM SIGARCH Computer Architecture News (2014).

[8] J. Zhang, M. Kwon, D. Gouk, C. Lee, M. Alian, M. Chun, M. Kademir, N. Kim, J. Kim, and M. Jung. 2018. FlashShare: Punching Through

Server Storage Stack from Kernel to Firmware for Ultra-Low Latency SSDs. In Proceedings of the USENIX Symposium on Operating

Systems Design and Implementation (OSDI).

[9] S. Hahn, S. Lee, I. Yee, D. Ryu, and J. Kim. 2018. FastTrack: Foreground App-Aware I/O Management for Improving User Experience of

Android Smartphones. In Proceedings of the USENIX Annual Technical Conference (ATC).

[10] M. Liu, H. Liu, C. Ye, X. Liao, H. Jin, Y. Zhang, R. Zheng, and L. Hu. 2022. Towards low-latency I/O services for mixed workloads using

ultra-low latency SSDs. In Proceedings of the ACM International Conference on Supercomputing (ICS).

[11] A. Tavakkol, J. Gomez-Luna, M. Sadrosadati, S. Ghose, and O. Mutlu. 2018. MQSim: A Framework for Enabling Realistic Studies of

Modern Multi-Queue SSD Devices. In Proceedings of the USENIX Conference on File and Storage Technologies (FAST).

[12] A. Tavakkol, M. Sadrosadati, S. Ghose, J. Kim, Y. Luo, Y. Wang, N. Ghiasi, L. Orosa, J. Gómez-Luna, and O. Mutlu. 2018. FLIN: Enabling

Fairness and Enhancing Performance in Modern NVMe Solid State Drives. In Proceedings of the ACM/IEEE Annual International

Symposium on Computer Architecture (ISCA).

[13] J. Yoon, S. Devendrappa, and X. Ouyang. U.S. Patent 0075570A1, Mar. 2017. Reducing Read Command Latency in Storage devices. (U.S.

Patent 0075570A1, Mar. 2017).

[14] T. Earhart and D. Pruett. U.S. Patent 10732895B2, August. 2020. Drive-level Internal Quality of Service. (U.S. Patent 10732895B2, August.

2020).

[15] M. Jung. 2020. OpenExpress: Fully Hardware Automated Open Research Framework for Future Fast NVMe Devices. In Proceedings of

the USENIX Annual Technical Conference (ATC).

[16] J. Lee, J. Choi, D. Park, and K. Kim. 2003. Data Retention Characteristics of Sub-100 nm NAND Flash Memory Cells. IEEE Electron Device

Letters, vol. 24, no. 12, pp. 748-750 (2003).

[17] Y. Cai, Y. Luo, E. Haratsch, K. Mai, and O. Mutlu. 2015. Data Retention in MLC NAND Flash Memory: Characterization, Optimization,

and Recovery. In Proceedings of the IEEE International Symposium on High Performance Computer Architecture (HPCA).

[18] A. Torsi, Y. Zhao, H. Liu, T. Tanzawa, A. Goda, P. Kalavade, and K. Parat. 2010. A Program Disturb Model and Channel Leakage Current

Study for Sub-20 nm NAND Flash Cells. IEEE Transactions on Electron Devices, vol. 58, no. 1, pp. 11-16 (2010).

[19] Y. Luo, S. Ghose, Y. Cai, E. Haratsch, and O. Mutlu. 2018. Improving 3D NAND Flash Memory Lifetime by Tolerating Early Retention

Loss and Process Variation. In Proceedings of the ACM Measurement and Analysis of Computing Systems (POMACS).

[20] Y. Shim, M. Kim, M. Chun, J. Park, Y. Kim, and J. Kim. 2019. Exploiting Process Similarity of 3D Flash Memory for High Performance

SSDs. In Proceedings of the IEEE/ACM International Symposium on Microarchitecture (MICRO).

[21] M. Kim, M. Chun, D. Hong, Y. Kim, G. Cho, D. Lee, and J. Kim. 2021. RealWear: Improving Performance and Lifetime of SSDs Using a

NAND Aging Marker. Performance Evaluation 145 (2021), 102153.

[22] Y. Luo, S. Ghose, Y. Cai, E. Haratsch, and O. Mutlu. 2018. HeatWatch: Improving 3D NAND Flash Memory Device Reliability by

Exploiting Self-Recovery and Temperature Awareness. In Proceedings of the IEEE International Symposium on High Performance Computer

Architecture (HPCA).

[23] Q. Li, M. Ye, Y. Cui, L. Shi, X. Li, and C. Xue. 2019. Sentinel Cells Enabled Fast Read for NAND Flash. In Proceedings of the USENIX

Workshop on Hot Topics in Storage and File Systems (HotStorage).

[24] J. Park, M. Kim, M. Chun, L. Orosa, J. Kim, and O. Mutlu. 2021. Reducing Solid-State Drive Read Latency by Optimizing Read-Retry. In

Proceedings of the ACM International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS).

ACM Trans. Storage

ReadGuard: Integrated SSD Management for Priority-Aware Read Performance Diferentiation • 37

[25] Q. Li, M. Ye, Y. Cui, L. Shi, X. Li, T. Kuo, and C. Xue. 2020. Shaving Retries with Sentinels for Fast Read over High-Density 3D Flash. In

Proceedings of the IEEE/ACM International Symposium on Microarchitecture (MICRO).

[26] S. Kim, J. Bae, H. Jang, W. Jin, J. Gong, S. Lee, T. Ham, and J. Lee. 2019. Practical Erase Suspension for Modern Low-latency SSDs. In

Proceedings of the USENIX Annual Technical Conference (ATC).

[27] G. Wu and X. He. 2012. Reducing SSD Read Latency via NAND Flash Program and Erase Suspension.. In Proceedings of the USENIX

Conference on File and Storage Technologies (FAST).

[28] Y. Kasorla, A. Schushan, A. Vega, E. Gurgi, and S. Ojalvo. U.S. Patent 9779038B2, Oct. 2017. Eicient Suspend-Resume Operation in

Memory Devices. (U.S. Patent 9779038B2, Oct. 2017).

[29] B. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears. 2010. Benchmarking Cloud Serving Systems with YCSB. In Proceedings

of the ACM Symposium on Cloud Computing (SoCC).

[30] Facebook. 2013. RocksDB. http://rocksdb.org/. (2013).

[31] D. Kang, W. Jeong, C. Kim, D. Kim, Y. Cho, K. Kang, J. Ryu, K. Kang, S. Lee, W. Kim, H. Lee, J. Yu, N. Choi, D. Jang, C. Lee, Y. Min, M. Kim,

A. Park, J. Son, I. Kim, P. Kwak, B. Jung, D. Lee, H. Kim, J. Ihm, D. Byeon, J. Lee, K. Park, and K. Kyung. 2016. 256Gb 3b/Cell V-NAND

Flash Memory with 48 Stacked WL Layers. In Proceedings of the International Solid-State Circuits Conference (ISSCC).

[32] 2013. Micron Announces 16 nm 128Gb MLC NAND, SSD in 2014. http://www.anandtech.com/show/7147/micron-announces-16nm-

128gb-mlc-nand-ssds-in-2014. (2013).

[33] B. Peleato, H. Tabrizi, R. Agarwal, and J. Ferreira. 2015. BER-Based Wear Leveling and Bad Block Management for NAND lash. In

Proceedings of the IEEE International Conference on Communications (ICC).

[34] Y. Woo and J. Kim. 2013. Diversifying Wear Index for MLC NAND Flash Memory to Extend the Lifetime of SSDs. In Proceedings of the

Eleventh ACM International Conference on Embedded Software (EMSOFT).

[35] A. Chou, K. Lai, K. Kumar, P. Chowdhury, and J. Lee. 1997. Modeling of Stress-Induced Leakage Current in Ultrathin Oxides with the

Trap-Assisted Tunneling Mechanism. Applied physics letters 70, 25 (1997), 3407ś3409.

[36] S. Kamohara, D. Park, and C. Hu. 1998. Deep-trap SILC (Stress Induced Leakage Current) Model for Nominal and Weak Oxides. In

Proceedings of the IEEE International Reliability Physics Symposium (IRPS).

[37] S. Takagi, N. Yasuda, and A. Toriumi. 1999. A New IV Model for Stress-Induced Leakage Current Including Inelastic Tunneling. IEEE

Transactions on Electron Devices 46, 2 (1999), 348ś354.

[38] JEDEC. 2009. Electrically Erasable Programmable ROM (EEPROM) Program / Erase Endurance and Data Retention Stress Test (JEDEC22-

A117). https://www.jedec.org. (2009).

[39] JEDEC. 2010. Stress-Test-Driven Qualiication of Integrated Circuits (JEDEC JESD47). https://www.jedec.org. (2010).

[40] Y. Luo, S. Ghose, Y. Cai, E. Haratsch, and O. Mutlu. 2018. HeatWatch: Improving 3D NAND lash memory device reliability by exploiting

self-recovery and temperature awareness. In Proceedings of the IEEE International Symposium on High Performance Computer Architecture

(HPCA).

[41] Y. Cai, Y. Luo, S. Ghose, and O. Mutlu. 2015. Read Disturb Errors in MLC NAND Flash Memory: Characterization, Mitigation, and

Recovery. In Proceedings of the IEEE/IFIP International Conference on Dependable Systems and Networks (DSN).

[42] Tianyu Ren, Qiao Li, Min Ye, and Chun Jason Xue. 2023. Read Disturb and Reliability: The Complete Story for 3D CT NAND Flash. In

Proceedings of the IEEE Non-Volatile Memory Systems and Applications Symposium (NVMSA).

[43] S. Lee and J. Kim. 2014. Efective Lifetime-Aware Dynamic Throttling for NAND Flash-Based SSDs. IEEE Trans. Comput. 65, 4 (2014),

1075ś1089.

[44] R Micheloni, L. Crippa, and A. Marelli. 2010. Inside NAND Flash Memories.

[45] Seiichi Aritome. 2015. NAND Flash Memory Technologies.

[46] JEDEC. 2010. JEDEC Solid State Technology Assn., Solid-State Drive (SSD) Requirements and Endurance Test Method. https://www.

jedec.org. (2010).

[47] Z. Jiao, J. Bhimani, and B. Kim. 2022. Wear Leveling in SSDs Considered Harmful. In Proceedings of the ACM Workshop on Hot Topics in

Storage and File Systems (HotStorage).

[48] F. Chen, M. Yang, Y. Chang, and T. Kuo. 2015. PWL: A Progressive Wear Leveling to Minimize Data Migration Overheads for NAND

Flash Devices. In Proceedings of the Conference on Design, Automation and Test in Europe (DATE).

[49] Z. Chen and Y. Zhao. 2020. DA-GC: A Dynamic Adjustment Garbage Collection Method Considering Wear-Leveling for SSD. In

Proceedings of the Great Lakes Symposium on VLSI (GLSVLSI).

[50] PCI-SIG. 2022. PCI Express M.2 Speciication Revision 4.0, Version 1.1. (2022). https://pcisig.com/speciications.

[51] Jinhong Li, Qiuping Wang, Patrick P. C. Lee, and Chao Shi. 2020. An In-Depth Analysis of Cloud Block Storage Workloads in Large-Scale

Production. In Proceedings of the IEEE International Symposium on Workload Characterization (IISWC).

[52] W. Kang and S. Yoo. 2020. � -Value Prediction for Reinforcement Learning Assisted Garbage Collection to Reduce Long Tail Latency in

SSD. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 39, 10 (2020), 2240ś2253.

[53] T. Zhu, M. Kozuch, and M. Harchol-Balter. 2017. Workloadcompactor: Reducing Datacenter Cost While Providing Tail Latency SLO

Guarantees. In Proceedings of the Symposium on Cloud Computing (SoCC).

ACM Trans. Storage

http://rocksdb.org/
http://www.anandtech.com/show/7147/micron-announces-16nm-128gb-mlc-nand-ssds-in-2014
http://www.anandtech.com/show/7147/micron-announces-16nm-128gb-mlc-nand-ssds-in-2014
https://www.jedec.org
https://www.jedec.org
https://www.jedec.org
https://www.jedec.org
https://pcisig.com/specifications

38 • M. Chun et al.

[54] S. Yan, H. Li, M. Hao, M. Tong, S. Sundararaman, A. Chein, and H. Gunawi. 2017. Tiny-Tail Flash: Near-Perfect Elimination of Garbage

Collection Tail Latencies in NAND SSDs. In Proceedings of the USENIX Conference on File and Storage Technologies (FAST).

[55] H. Litz, J. Gonzalez, A. Klimovic, and C. Kozyrakis. 2022. RAIL: Predictable, Low Tail Latency for NVMe Flash. ACM Transactions on

Storage (TOS) 18, 1 (2022), 1ś21.

[56] Z. Sha, J. Li, L. Song, J. Tang, M. Huang, Z. Cai, L. Qian, J. Liao, and Z. Liu. 2021. Low I/O Intensity-Aware Partial GC Scheduling to

Reduce Long-Tail Latency in SSDs. ACM Transactions on Architecture and Code Optimization (TACO) 18, 4 (2021), 1ś25.

[57] Nikolaos Papandreou, Nikolas Loannou, Thomas Parnell, Roman Pletka, Milos Stanisavljevic, Radu Stoica, Sasa Tomic, and Haralampos

Pozidis. 2020. Reliability of 3D NAND Flash Memory with a Focus on Read Voltage Calibration from a System Aspect. In Proceedings of

the Non-Volatile Memory Technology Symposium (NVMTS).

[58] Yingge Li, Guojun Han, Sanwei Huang, Chang Liu, Meng Zhang, and Fei Wu. 2023. Exploiting Metadata to Estimate Read Reference

Voltage for 3-D NAND Flash Memory. IEEE Transactions on Consumer Electronics (TCE) (2023).

[59] Meng Zhang, Fei Wu, Qin Yu, Weihua Liu, Yifan Wang, and Changsheng Xie. 2020. Exploiting Error Characteristic to Optimize Read

Voltage for 3-D NAND Flash Memory. IEEE Transactions on Electron Devices (TED) (2020).

[60] Jinhua Cui, Zhimin Zeng, Jianhang Huang, Weiqi Yuan, and Laurence T Yang. 2022. Improving 3-D NAND SSD Read Performance by

Parallelizing Read-Retry. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems (TCAD) (2022).

[61] Micron. 2004. Technical Note: NAND Flash Performance Increase Using the Micron PAGE READ CACHE MODE Command. https:

//www.micron.com/-/media/client/global/Documents/Products/Technical*****20Note/NAND*****20Flash/tn2901.pdf. (2004).

[62] C. Hung, M. Chang, Y. Yang, Y. Kuo, T. Lai, S. Shen, J. Hsu, S. Hung, H. Lue, Y. Shih, S. Huang, T. Chen, T. Chen, C. Chen, C. Hung, and

C. Lu. 2015. Layer-aware Program-and-Read Schemes for 3D Stackable Vertical-Gate BE-SONOS NAND Flash Against Cross-Layer

Process Variations. IEEE Journal of Solid-State Circuits, vol. 50, no. 6, pp. 1491-1501 (2015).

[63] Seungjae Lee, Chulbum Kim, Minsu Kim, Sung-min Joe, Joonsuc Jang, Seungbum Kim, Kangbin Lee, Jisu Kim, Jiyoon Park, Han-Jun

Lee, et al. 2018. A 1Tb 4b/cell 64-stacked-WL 3D NAND lash memory with 12MB/s program throughput. In Proceedings of the IEEE

International Solid-State Circuits Conference (ISSCC).

[64] Hwang Huh, Wanik Cho, Jinhaeng Lee, Yujong Noh, Yongsoon Park, Sunghwa Ok, Jongwoo Kim, Kayoung Cho, Hyunchul Lee, Geonu

Kim, et al. 2020. 13.2 a 1tb 4b/cell 96-stacked-wl 3d nand lash memory with 30mb/s program throughput using peripheral circuit under

memory cell array technique. In Proceedings of the IEEE International Solid-State Circuits Conference (ISSCC).

[65] Tsutomu Higuchi, Takuyo Kodama, Koji Kato, Ryo Fukuda, Naoya Tokiwa, Mitsuhiro Abe, Teruo Takagiwa, Yuki Shimizu, Junji Musha,

Katsuaki Sakurai, et al. 2021. 30.4 a 1Tb 3b/cell 3D-lash memory in a 170+ word-line-layer technology. In Proceedings of the IEEE

International Solid-State Circuits Conference (ISSCC).

[66] Ted Pekny, Luyen Vu, Jef Tsai, Dheeraj Srinivasan, Erwin Yu, Jonathan Pabustan, Joe Xu, Srinivas Deshmukh, Kim-Fung Chan,

Michael Piccardi, et al. 2022. A 1-Tb density 4b/cell 3D-NAND lash on 176-tier technology with 4-independent planes for read using

CMOS-under-the-array. In Proceedings of the IEEE International Solid-State Circuits Conference (ISSCC).

[67] Li-Pin Chang. 2007. On eicient wear leveling for large-scale lash-memory storage systems. In Proceedings of the ACM Symposium on

Applied Computing (SAC).

[68] S. Kim, J. Kim, J. Lee, and J. Jeong. 2017. Enlightening the I/O Path: A Holistic Approach for Application Performance. In Proceedings of

the USENIX Conference on File and Storage Technologies (FAST).

[69] Sandoval, O. 2017. blk-mq: Kyber multiqueue I/O scheduler. http://lwn.net/Articles/720071/. (2017).

[70] S. Yang, T. Harter, N. Agrawal, S. Kowsalya, A. Krishnamurthy, S. Al-Kiswany, R. Kaushik, A. Arpaci-Dusseau, and R. Arpaci-Dusseau.

2015. Split-Level I/O Scheduling. In Proceedings of the ACM Symposium on Operating Systems Principles (SOSP).

[71] Q. Zhang, D. Feng, F. Wnag, and Xie. Y. 2013. An Eicient, QoS-aware I/O Scheduler for Solid State Drive. In Proceedings of the IEEE

International Conference on High Performance Computing and Communications (HPCC).

[72] NVM Express. 2022. NVME Express Base Speciication 2.0c. https://nvmexpress.org/wp-content/uploads/NVM-Express-Base-

Speciication-2.0c-2022.10.04-Ratiied.pdf/. (2022).

[73] Hao Fan, Yiliang Ye, Shadi Ibrahim, Zhuo Huang, Xingru Li, Weibin Xue, Song Wu, Chen Yu, Xuanhua Shi, and Hai Jin. 2024. QoS-pro:

A QoS-Enhanced Transaction Processing Framework for Shared SSDs. ACM Transactions on Architecture and Code Optimization (2024).

[74] Byunghei Jun and Dongkun Shin. 2015. Workload-Aware Budget Compensation Scheduling for NVMe Solid State Drives. In Proceedings

of the IEEE Non-Volatile Memory System and Applications Symposium (NVMSA).

[75] Yajuan Du, Yuan Gao, Siyi Huang, and Qiao Li. 2023. LDPC Level Prediction Towards Read Performance of High-Density Flash Memories.

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems (TCAD) (2023).

[76] Yajuan Du, Deqing Zou, Qiao Li, Liang Shi, Hai Jin, and Chun Jason Xue. 2017. Laldpc: Latency-aware ldpc for read performance

improvement of solid state drives. In Proceeding of the International Conference on Massive Storage Systems and Technology (MSST).

[77] Chun-Yi Liu, Yunju Lee, Myoungsoo Jung, Mahmut Taylan Kandemir, and Wonil Choi. 2021. Prolonging 3D NAND SSD lifetime via

read latency relaxation. In Proceedings of the ACM International Conference on Architectural Support for Programming Languages and

Operating Systems (ASPLOS).

ACM Trans. Storage

https://www.micron.com/-/media/client/global/Documents/Products/Technical*****20Note/NAND*****20Flash/tn2901.pdf
https://www.micron.com/-/media/client/global/Documents/Products/Technical*****20Note/NAND*****20Flash/tn2901.pdf
http://lwn.net/Articles/720071/
https://nvmexpress.org/wp-content/uploads/NVM-Express-Base-Specification-2.0c-2022.10.04-Ratified.pdf/
https://nvmexpress.org/wp-content/uploads/NVM-Express-Base-Specification-2.0c-2022.10.04-Ratified.pdf/

ReadGuard: Integrated SSD Management for Priority-Aware Read Performance Diferentiation • 39

[78] Che-Wei Chang, Geng-You Chen, Yi-Jung Chen, Chia-Wei Yeh, Pei Yin Eng, Ana Cheung, and Chia-Lin Yang. 2017. Exploiting Write

Heterogeneity of Morphable MLC/SLC SSDs in Datacenters with Service-Level Objectives. IEEE Trans. Comput. (2017).

[79] Michael Mesnier, Feng Chen, Tian Luo, and Jason B Akers. 2011. Diferentiated Storage Services. In Proceedings of the ACM Symposium

on Operating Systems Principles (SOSP).

[80] Mark Wilkening, Udit Gupta, Samuel Hsia, Caroline Trippel, Carole-Jean Wu, David Brooks, and Gu-Yeon Wei. 2021. RecSSD: Near Data

Processing for Solid State Drive Based Recommendation Inference. In Proceedings of the ACM International Conference on Architectural

Support for Programming Languages and Operating Systems (ASPLOS).

[81] Wanik Cho, Jongseok Jung, Jongwoo Kim, Junghoon Ham, Sangkyu Lee, Yujong Noh, Dauni Kim, Wanseob Lee, Kayoung Cho, Kwanho

Kim, et al. 2022. A 1-Tb, 4b/Cell, 176-Stacked-WL 3D-NAND Flash Memory with Improved Read Latency and a 14.8 Gb/mm2 Density. In

Proceedings of the IEEE International Solid-State Circuits Conference (ISSCC).

[82] Ted Pekny, Luyen Vu, Jef Tsai, Dheeraj Srinivasan, Erwin Yu, Jonathan Pabustan, Joe Xu, Srinivas Deshmukh, Kim-Fung Chan, Michael

Piccardi, et al. 2022. A 1-Tb Density 4b/Cell 3D-NAND Flash on 176-Tier Technology with 4-Independent Planes for Read Using

CMOS-under-the-Array. In Proceedings of the IEEE International Solid-State Circuits Conference (ISSCC).

Received 19 September 2023; revised 9 May 2024; accepted 25 June 2024

ACM Trans. Storage

	Abstract
	1 Introduction
	2 Background
	2.1 NAND Flash Memory Basics
	2.2 Read Errors in NAND Flash Memory
	2.3 Read-Retry in Modern SSDs and Its Impact on Read Latency
	2.4 Overview of a Priority-Aware SSD

	3 Root Cause Analysis
	3.1 Cause 1: Large Variations in Read Latency
	3.2 Cause 2: Priority-Oblivious Block Management
	3.3 Cause 3: No Read-Over-Read Preemption

	4 Read-Latency-Centric Block Marker
	4.1 NAND Age Predictor: age0.94(B)
	4.2 blackNretry Predictor Function: nr0.94(B)

	5 Design of ReadGuard
	5.1 Block Grader
	5.2 Priority-Aware Block Manager
	5.3 WAF Monitor
	5.4 Extended Suspend/Resume Arbiter
	5.5 Other FTL Modifications

	6 Evaluation
	6.1 Evaluation Methodology
	6.2 Performance Evaluation
	6.3 Comparison to Prior Work
	6.4 Intra-Block Latency Variation
	6.5 Overhead Evaluation

	7 Related Work
	8 Discussion
	9 Conclusions
	References

