
MegIS: High-Performance, Energy-Efficient, and Low-Cost
Metagenomic Analysis with In-Storage Processing

Nika Mansouri Ghiasi1 Mohammad Sadrosadati1 Harun Mustafa1 Arvid Gollwitzer1

Can Firtina1 Julien Eudine1 Haiyu Mao1 Joël Lindegger1 Meryem Banu Cavlak1

Mohammed Alser1 Jisung Park2 Onur Mutlu1
1ETH Zürich 2POSTECH

Metagenomics, the study of the genome sequences of diverse
organisms in a common environment, has led to significant ad-
vances in many fields. Since the species present in a metage-
nomic sample are not known in advance, metagenomic analy-
sis commonly involves the key tasks of determining the species
present in a sample and their relative abundances. These tasks
require searching large metagenomic databases containing in-
formation on different species’ genomes. Metagenomic analysis
suffers from significant data movement overhead due to moving
large amounts of low-reuse data from the storage system to the
rest of the system. In-storage processing can be a fundamen-
tal solution for reducing this overhead. However, designing an
in-storage processing system for metagenomics is challenging
because existing approaches to metagenomic analysis cannot be
directly implemented in storage effectively due to the hardware
limitations of modern SSDs.
We proposeMegIS, the first in-storage processing system de-

signed to significantly reduce the data movement overhead of
the end-to-end metagenomic analysis pipeline. MegIS is enabled
by our lightweight design that effectively leverages and orches-
trates processing inside and outside the storage system. Through
our detailed analysis of the end-to-end metagenomic analysis
pipeline and careful hardware/software co-design, we address
in-storage processing challenges for metagenomics via special-
ized and efficient 1) task partitioning, 2) data/computation flow
coordination, 3) storage technology-aware algorithmic optimiza-
tions, 4) data mapping, and 5) lightweight in-storage acceler-
ators. MegIS’s design is flexible, capable of supporting differ-
ent types of metagenomic input datasets, and can be integrated
into various metagenomic analysis pipelines. Our evaluation
shows that MegIS outperforms the state-of-the-art performance-
and accuracy-optimized software metagenomic tools by 2.7×–
37.2× and 6.9×–100.2×, respectively, while matching the accu-
racy of the accuracy-optimized tool. MegIS achieves 1.5×–5.1×
speedup compared to the state-of-the-art metagenomic hardware-
accelerated (using processing-in-memory) tool, while achieving
significantly higher accuracy.

1. Introduction
Metagenomics, an increasingly important domain in bioin-

formatics, requires the analysis of the genome sequences of
various organisms of different species present in a common en-
vironment (e.g., human gut, soil, or oceans) [1–3]. Unlike tra-
ditional genomics [4–8] that studies genome sequences from
an individual (or a small group of individuals) of the same
known species, metagenomics deals with genome sequences
whose species are not known in advance in many cases, thereby
requiring comparisons of the target sequences against large
databases of many reference genomes. Metagenomics has led
to groundbreaking advances in many fields, such as precision

medicine [9,10], urgent clinical settings [11], understandingmi-
crobial diversity of an environment [12, 13], discovering early
warnings of communicable diseases [14–16], and outbreak trac-
ing [17]. The pivotal role of metagenomics, together with rapid
improvements in genome sequencing (e.g., reduced cost and
improved throughput [18]), has resulted in the fast-growing
adoption of metagenomics [10, 19, 20].

Given a metagenomic sample, a typical workflow consists of
three key steps: (i) sequencing, (ii) basecalling, and (iii) metage-
nomic analysis. First, sequencing extracts the genomic informa-
tion of all organisms in the sample. Since current sequencing
technologies cannot process a DNA molecule as a whole, a se-
quencing machine generates randomly sampled, inexact frag-
ments of genomic information, called reads. A metagenomic
sample contains organisms from several species, and during
sequencing, it is unclear what species each read comes from.
Second, basecalling converts the raw sequencer data of reads
into sequences of characters that represent the nucleotides A, C,
G, and T. Third,metagenomic analysis identifies the distribution
of different taxa (i.e., groups or categories in biological clas-
sification, such as species and genera) within a metagenomic
sample. Metagenomic analysis commonly involves the two key
tasks of determining the species present/absent in the sample
and finding their relative abundances.

To enable fast and efficient metagenomics for many critical
applications, it is essential to improve the performance and
energy efficiency of metagenomic analysis due to at least three
major reasons. First, metagenomic analysis is typically per-
formedmuchmore frequently compared to the other two steps
(i.e., sequencing and basecalling) in the metagenomic workflow.
While sequencing and basecalling are one-time tasks for a sam-
ple in many cases, sequenced and basecalled reads in a sample
often need to be analyzed over and over inmultiple studies or at
different times in the same study [21]. Second, as shown in our
motivational analysis in §3 on a high-end server node, even
when performing the metagenomic analysis step only once for
a sample, this step bottlenecks the end-to-end performance
and energy efficiency of the workflow. Third, the performance
and energy-efficiency gaps between the metagenomic analysis
step and the other steps are expected to widen even more due
to the rapid advances in sequencing and basecalling technolo-
gies, such as significant increases in throughput and energy
efficiency of sequencing [22–27] and basecalling [28–33]. For
these reasons, simply scaling up traditional systems cannot
effectively optimize the metagenomic analysis step enough to
keep up with the rapid advances.
Metagenomic analysis suffers from significant data move-

ment overhead because it requires accessing large amounts of
low-reuse data. Since we do not know the species present in a
metagenomic sample, metagenomic analysis requires search-

1

ar
X

iv
:2

40
6.

19
11

3v
1

 [
cs

.A
R

]
 2

7
Ju

n
20

24

ing large databases (e.g., to several TBs [34–39] or more than a
hundred TBs in emerging databases [36,37]) that contain infor-
mation on different organisms’ genomes. Database sizes are
expected to increase further in the future, and at a fast pace.1
Two notable reasons for this growth are 1) the rapid evolution
of viruses and bacteria [41], which necessitates frequent up-
dates with new reference genomes [42, 43], and 2) the fact that
databases may include sequences from both highly curated
reference genomes and from less curated metagenomic sample
sets [35, 36]. Particularly, as over 99% of Earth’s microbes re-
main unidentified and excluded from curated reference genome
databases [44, 45], the expanded databases improve sensitiv-
ity [45]. Recent advances in the automated and scalable con-
struction of genomic data from more organisms have further
contributed to database growth by enabling the rapid addi-
tion of new sequences to databases [46, 47]. Our motivational
analysis (§3) of the state-of-the-art metagenomic analysis tools
shows that data movement overhead from the storage system
significantly impacts their end-to-end performance. Due to its
low reuse, the data needs to move all the way from the storage
system to the main memory and processing units for its first
use, and it will likely not be used again or reused very little
during analysis. This unnecessary data movement, combined
with the low computation intensity of metagenomic analysis
and the limited I/O (input/output) bandwidth, leads to large
storage I/O overheads for metagenomic analysis.
While there has been effort in accelerating metagenomic

analysis, to our knowledge, no prior work fundamentally ad-
dresses its storage I/O overheads. Some works (e.g., [48–53])
aim to alleviate this overhead by applying sampling techniques
to reduce the database size, but they incur accuracy loss, which
is problematic for many use cases (e.g., [18, 26, 42, 54–60]). Var-
ious other works (e.g., [61–70]) accelerate other bottlenecks in
metagenomic analysis, such as computation and main mem-
ory bottlenecks. These works do not alleviate I/O overheads,
whose impact on end-to-end performance becomes even larger
(as shown in §3) when other bottlenecks are alleviated.

In-Storage Processing (ISP), i.e., processing data directly
inside the storage device where target data resides, can be a
fundamentally high-performance approach to mitigating the
data-movement bottleneck in metagenomic analysis, given
its three major benefits. First, ISP can significantly reduce
unnecessary data movement from/to the storage system by
processing large amounts of low-reuse data inside the storage
system while sending only the results to the host. Second, ISP
can leverage each SSD’s2 large internal bandwidth to access
target data without being restricted by the SSD’s relatively
smaller external bandwidth. Third, ISP alleviates the overall
execution burden of applications with low data reuse from the
rest of the system (e.g., processing units and main memory),
freeing up the host to perform other useful work instead.

Challenges of ISP. Despite the benefits of ISP, none of the
existing approaches to metagenomic analysis can be effectively
implemented as an ISP system due to the limited hardware
resources available in current storage devices. Some tools incur

1For example, based on recently published trends, the ENA assembled/an-
notated sequence database size currently doubles every 19.9 months [25], and
the BLAST nt database size doubled from 2021 to 2022 [40].

2In this work, we focus on the predominant NAND flash-based SSD
technology [71, 72]. We expect that our insights and designs would benefit
storage systems built with other emerging technologies.

a large number of random accesses to search the database
(e.g., [48, 49, 51, 53, 54, 64, 73–78]), which hinders ISP’s large
potential by preventing the full utilization of SSD internal
bandwidth. This is due to costly conflicts in internal SSD
resources (e.g., channels and NAND flash chips [79–81]) caused
by random accesses. Some tools predominantly incur more
suitable streaming accesses (e.g., [38, 52, 57, 82, 83]), but doing
so comes at the cost of more computation and main memory
capacity requirements that are challenging for ISP to meet
due to the limited hardware resources available inside SSDs.
Therefore, directly adopting either approach (with random or
streaming accesses) in ISP incurs performance, energy, and
storage device lifetime overheads.

Our goal in this work is to improve metagenomic analysis
performance by reducing the large data movement overhead
from the storage system in a cost-effective manner. To this end,
we proposeMegIS, the first ISP system designed to reduce the
data movement overheads inside the end-to-end metagenomic
analysis pipeline. The key idea of MegIS is to enable coopera-
tive ISP for metagenomics, where we do not solely focus on
processing inside the storage system but, instead, we capital-
ize on the strengths of processing both inside and outside the
storage system. We enable cooperative ISP via a synergistic
hardware/software co-design between the storage system and
the host system.

Key Mechanism. We design MegIS as an efficient pipeline
between the SSD and the host system to (i) leverage and (ii) or-
chestrate the capabilities of both. Based on our rigorous analy-
sis of the end-to-end metagenomic analysis pipeline, we pro-
pose a new hardware/software co-designed accelerator frame-
work that consists of five aspects. First, we partition and map
different parts of the metagenomic analysis pipeline to the host
and the ISP system such that each part is executed on the most
suitable architecture. Second, we coordinate the data/compu-
tation flow between the host and the SSD such that MegIS
(i) completely overlaps the data transfer time between them
with computation time to reduce the communication over-
head between different parts, (ii) leverages SSD bandwidth
efficiently, and (iii) does not require large DRAM inside the
SSD or a large number of writes to the flash chips. Third,
we devise storage technology-aware metagenomics algorithm
optimizations to enable efficient access patterns to the SSD.
Fourth, we design lightweight in-storage accelerators to per-
formMegIS’s ISP functionalities while minimizing the required
SRAM/DRAM buffer spaces inside the SSD. Fifth, we design
an efficient data mapping scheme and Flash Translation Layer
(FTL) specialized to the characteristics of metagenomic analy-
sis to leverage the SSD’s full internal bandwidth.
Key Results. We evaluate MegIS with two different

SSD configurations (performance-optimized [84] and cost-
optimized [85]). We compare MegIS against three state-of-the-
art software and hardware-accelerated metagenomics tools:
(i) Kraken2 [49], which is optimized for performance, (ii) Met-
align [82], which is optimized for accuracy, and (iii) a state-
of-the-art processing-in-memory accelerator, Sieve [64], in-
tegrated into Kraken2 to accelerate its k-mer matching. By
analyzing end-to-end performance, we show that MegIS pro-
vides 2.7–37.2× and 1.5–5.1× speedup compared to Kraken2
and Sieve, respectively, while achieving significantly higher
accuracy. MegIS provides 6.9–100.2× speedup compared to

2

Metalign, while providing the same accuracy (MegIS does not
affect analysis accuracy compared to this accuracy-optimized
baseline). MegIS provides large average energy reductions of
5.4× and 1.9× compared to Kraken2 and Sieve, respectively,
and 15.2× compared to accuracy-optimized Metalign. MegIS’s
benefits come at a low area cost of 1.7% over the area of the
three cores [86] in an SSD controller [87].

This work makes the following key contributions:
• We demonstrate the end-to-end performance impact of stor-
age I/O overheads in metagenomic analysis.

• We propose MegIS, the first in-storage processing (ISP) sys-
tem tailored to reduce the data movement overhead of the
end-to-end metagenomic analysis pipeline, significantly re-
ducing its I/O overheads and improving its performance and
energy-efficiency.

• We present a new hardware/software co-design to enable an
efficient and cooperative pipeline between the host and the
SSD to alleviate I/O data movement overheads in metage-
nomic analysis.

• We rigorously evaluate MegIS and show that it improves per-
formance and energy efficiency compared to the state-of-the-
art metagenomics tools (software and hardware-accelerated),
while maintaining high accuracy. It does so without rely-
ing on costly hardware resources throughout the system,
making metagenomics more accessible for wider adoption.

2. Background
2.1. Metagenomic Analysis
Fig. 1 shows an overview of metagenomic analysis, which

involves determining the species present/absent in the sample
1 and their relative abundances (i.e., the relative frequencies
of the occurrence of different species in the sample) 2 .

A	
Da
ta
ba
se

❷Abundance	
Estimation

GCTTACGATCATC

GTCCCAAATTGGA
…A	

Sa
m
pl
e	

Re
ad
	S
et GCTTA

CTTAC

TTACGk-
m
er
s

…ⓐ

TaxIDs
in	the	Sample

1638
23
421
23…

Presence/Absence
Identification

ⓑ

ⓒ

❶

Species#1
Species#2
Species#3

Species	#1
Species	#2
Species	#3

Figure 1: Overview of metagenomic analysis.

2.1.1. Presence/absence Identification. To find species
present in the sample, many tools (e.g., [38, 48, 49, 51–54, 57, 64,
73–78, 82, 83]) extract k-mers (i.e., subsequences of length k)
from the input queries in a sample read set (a in Fig. 1) and
search for the k-mers in an input reference database (b). Each
database contains k-mers extracted from reference genomes
of a wide range of species. The database associates each in-
dexed k-mer with a taxonomic identifier (taxID)3 of the ref-
erence genome(s) the k-mer comes from. At the end of the
presence/absence identification process, the metagenomic tool
outputs the taxIDs of the species present in the sample (c).
The GB- or TB-scale databases typically support random

(e.g., [48, 49, 51, 53, 54, 64, 73–78]) or streaming (e.g., [38, 52, 57,
82, 83]) access patterns.
Tools with Random Access Queries (R-Qry). Some tools
(e.g., [48, 49, 51, 53, 54, 64, 73–78]) commonly perform random
accesses to search their database. A state-of-the-art tool in

3A taxID is an integer attributed to a cluster of related species.

this category is Kraken2 [49], which maintains a hash table
that maps each indexed k-mer to a taxID. To identify which
species are present in a set of queries, Kraken2 extracts k-mers
from the read queries and searches the hash table to retrieve
the k-mers’ associated taxIDs. For each read, Kraken2 collects
the taxIDs of that read’s k-mers and, based on the occurrence
frequencies of these taxIDs, uses a classification algorithm to
assign a single taxID to each read. Finally, Kraken2 identifies
the species present in the sample based on the taxIDs of the
reads in the sample.
Tools with Streaming Access Queries (S-Qry). Some tools
(e.g., [38, 52, 57, 82, 83]) predominantly feature streaming ac-
cesses to their databases. A state-of-the-art tool in this category
is Metalign [82]. Presence/absence identification in Metalign
is done via 1) preparing the input read set queries, and 2) find-
ing species present in them. To process the queries, the tool
extracts k-mers from the reads and sorts them. Finding the
species in the sample involves two steps. First, the tool finds
the intersecting k-mers, which are k-mers that are common
between the query k-mers and a pre-sorted reference database.
In this step, the tool uses large k-mers (e.g., k = 60) for both
the queries and the database to maintain a low false positive
rate. This is because large k-mers are more unique, and match-
ing a long k-mer ensures that the queries have at least one
long and specific match to the database. Second, the tool finds
the taxIDs of the intersecting k-mers by searching for the in-
tersecting k-mers or their prefixes in a smaller sketch database
of variable-sized k-mers. Each sketch is a small representative
subset of k-mers associated with a given taxID. Searching for
both the intersecting k-mers and their prefixes in this step
increases the true positive rate (i.e., species correctly identified
as present in the sample out of all species actually present in
the sample) by expanding the number of matches.
2.1.2. Abundance Estimation. After finding the taxIDs
of the species present in the sample, some applications re-
quire a more sensitive step to find the species’ relative abun-
dances [48, 51, 53, 74, 76, 82, 83, 88–91] in the sample. Dif-
ferent tools implement their own approaches for estimat-
ing abundances, from lightweight statistical models [89–91]
to more accurate but computationally-intensive read map-
ping [48, 53, 54, 74, 76, 82]. Read mapping is the process of
finding potential matching locations of reads against one or
more reference genomes. Metagenomic tools canmap the reads
against reference genomes of species in the sample, accurately
determining the number of reads belonging to each species.
2.2. SSD Organization
Fig. 2 depicts the organization of a modern NAND flash-

based SSD, which consists of three main components.
1 NAND Flash Memory. A NAND package consists of mul-
tiple dies or chips, sharing the NAND package’s I/O pins. One
or multiple packages share a command/data bus or channel
to communicate with the SSD controller. Dies can operate

Package#1 Package#1

❸
DRAM

⋯

Channel#1

Die#1

Flash	
Controller

❷ SSD	Controller

CoresFTL

❶

Flash	
Controller⋯

Die#4 Die#1 Die#4

Channel#1

Peripheral

Plane#
1

Plane#
2

⋯ ⋯

Blk#1 Blk#1

Meta
dataPage

Figure 2: Organizational overview of a modern SSD.

3

independently, but each channel can be used by only one die at
a time to communicate with the controller. Each die has mul-
tiple (e.g., 2 or 4) planes, each with thousands of blocks. Each
block has hundreds to thousands of 4–16 KiB pages. NAND
flash memory performs read/write operations at page granu-
larity but erase operations at block granularity. The peripheral
circuitry to access pages is shared among the planes in each
die. Hence, it is possible for the planes in a die to operate
concurrently when accessing pages (or blocks) at the same
offset. This mode is called the multiplane operation.
2 SSD Controller. An SSD controller consists of two key
components. First, multiple cores run the FTL, which is respon-
sible for communication with the host, internal I/O scheduling,
and various SSD management tasks. Second, per-channel hard-
ware flash controllers manage request handling [80, 92] and
error correction for the NAND flash chips [71, 72, 93–104].
3 DRAM. Modern SSDs use low-power DRAM [105] to store
metadata for SSD management tasks. Most of the DRAM ca-
pacity inside the SSD (i.e., internal DRAM) is used to store the
logical-to-physical (i.e., L2P) mappings, which are typically
maintained at a granularity of 4KiB to enhance random access
performance. In a 32-bit architecture, with 4 bytes of metadata
stored for every 4KiB of data, the required capacity for L2P
mappings is about 0.1% of the SSD’s capacity. For example, a
4-GB LPDDR4 DRAM is used for a 4-TB SSD [87].
2.3. In-Storage Processing

Processing data directly in storage via in-storage processing
(ISP) can be a fundamentally high-performance approach for
reducing the overheads of moving large amounts of low-reuse
data across the system, providing three key benefits. First,
ISP reduces unnecessary data movement from the storage sys-
tem. Second, ISP reduces the execution burden of applications
with low data reuse from the rest of the system, allowing it
to perform other useful tasks. Third, as shown by many prior
works (e.g., [106–114]), ISP can benefit from the SSD’s inter-
nal bandwidth. In modern SSDs, the internal bandwidth is
usually larger than the external. For example, a modern SSD
controller [115] supports 6.5 GB/s external bandwidth and 19.2
GB/s internal bandwidth (16 channels with a maximum per-
channel bandwidth of 1.2 GB/s). It is essential to overprovision
the internal bandwidth to avoid hurting the user-perceived
external I/O bandwidth by reducing the negative impact of
1) channel conflicts [79, 81, 116, 117] and 2) the SSD’s internal
data migration for management tasks such as garbage col-
lection [71, 80, 118–120], wear-leveling [71, 72, 121], and data
refresh [71, 98, 101, 102].

Some prior works propose ISP systems in the form of special-
purpose accelerators for different applications [106, 107, 111,
112,114,122–142]. Several prior works propose general-purpose
processing inside storage devices [105, 138, 139, 143–154], bulk-
bitwise operations using NAND flash [155, 156], or SSDs in
close integration with FPGAs [109, 157–161] or GPUs [162].
3. Motivational Analysis
3.1. Criticality of Metagenomic Analysis

By enabling the analysis of the genomes of organisms from
different species in a common environment, metagenomics
overcomes a limitation of traditional genomics, which requires
culturing individual known species in isolation. This limitation
has been amajor roadblock in many clinical and environmental

use cases [163]. The impact of metagenomics has been rapidly
increasing in many areas that each have broad implications for
society, such as health [9,11], agriculture [164], environmental
monitoring [14–17], and many other critical areas. Due to its
importance, metagenomics has attracted wide global attention,
with medical and government health institutions heavily in-
vesting in metagenomic analysis [164–166]. The global amount
of genomic data that is incorporated in metagenomic work-
flows is growing exponentially [42,167], doubling every several
months [25, 40, 42, 168], and is projected to surpass the data
growth rate of YouTube and Twitter [64, 167, 168].
In metagenomics, the analysis step bottlenecks the end-to-

end performance of the workflow, and therefore, poses a press-
ing need for acceleration [11, 19, 64, 65, 169, 170] for three rea-
sons. First, the sequencing and basecalling steps for a sample
are usually one-time tasks [22,26,171]. In many cases, the reads
from a single sequenced sample can be analyzed by multiple
studies or at different times in the same study. This is because
(i) there are many heuristics involved in metagenomics, and
achieving a desired sensitivity-specificity tradeoff commonly
requires parameter tuning [21], or using different databases
created with different parameters or genomes [172], and (ii)
a sample can be analyzed several times with databases that
are regularly updated with new genomes, or with syndrome-
specific targeted databases [172]. Second, even when perform-
ing the metagenomic analysis step only once for a sample,
the throughput of this step is significantly lower than the se-
quencing throughput of modern sequencers (e.g., [173]). While
sequencing one sample can take a long time, a single sequenc-
ing machine can sequencemany samples from different sources
in parallel [22,174], achieving very high throughput. Our anal-
ysis with a state-of-the-art metagenomic tool [82] shows that
analyzing the data, sequenced and basecalled by a sequencer in
48 hours, takes 38 days on a high-end server node (detailed con-
figurations in §5). Such long analysis poses serious challenges,
specifically for time-critical use cases (e.g., clinical settings [11]
and timely surveillance of infectious diseases [17]). Since the
growth rate of sequencing throughput is higher than Moore’s
Law [18], this already large gap between sequencing and analy-
sis throughput is widening [22,24,25,27], and simply scaling up
traditional systems for analysis is not efficient. Third, the devel-
opment of sequencing technologies that enable analysis during
sequencing [175–181] increasingly necessitates the need for
fast analysis that can keep up with sequencing throughput.
The analysis step is also the primary energy bottleneck in

the metagenomic workflow, and optimizing its efficiency is
vital as sequencing technologies rapidly evolve. For example, a
high-end sequencer [173] uses 405 KJ to sequence and basecall
100 million reads, with 92.5 Mbp/s throughput and 2,500 W
power consumption [173]. In contrast, processing this dataset
on a commodity server (detailed configurations in §5) requires
675 KJ, accounting for 63% of total energy. The need to en-
hance the analysis’ energy efficiency is further increasing for
two reasons. First, sequencing efficiency has been continually
improving. For example, a new version of Illumina sequencer
from 2023 [173] provides 44× higher throughput at only 1.5×
higher power consumption compared to an older version [182]
from 2020, resulting in much better sequencing energy effi-
ciency. Therefore, simply relying on scaling up commodity
systems to improve the analysis throughput worsens the en-

4

ergy bottleneck. Second, the increased adoption of compact
portable sequencers [183] for on-site metagenomics (e.g., in
remote locations [184] or for personalized bedside care [19])
offers high-throughput sequencing with low energy costs. This
further amplifies the need for energy- and cost-effective anal-
ysis that can match the portability and convenience of these
sequencers.
3.2. Data Movement Overheads

We conduct experimental analysis to assess the storage sys-
tem’s impact on the performance of metagenomic analysis.
Tools and Datasets. We analyze two state-of-the-art tools
for presence/absence identification: 1) Kraken2 [49], which
queries its large database with random access patterns (R-Qry),4
and 2) Metalign [82], which exhibits mostly sequential stream-
ing accesses to its database (S-Qry). We use the best-performing
thread count for each tool. We use a query sample with 100 mil-
lion reads (CAMI-L, detailed in §5) from the CAMI dataset [59],
commonly used for profiling metagenomic tools. We generate
a database based on microbial genomes drawn from NCBI’s
databases [82, 185] using default parameters for each tool. For
Kraken2 [49], this results in a 293 GB database. For Metal-
ign [82], this results in a 701 GB k-mer database and a 6.9 GB
sketch tree. To show the impact of database size, we also ana-
lyze larger k-mer databases (0.6 TB and 1.4 TB for Kraken and
Metalign, respectively) that include more species.
System Configurations. We use a high-end server with an
AMD EPYC 7742 CPU [186] and 1.5-TB DDR4 DRAM [187].
We note that the DRAM size is larger than the size of all data
accessed during the analysis by each tool. This way, we can an-
alyze the fundamental I/O overhead of moving large amounts
of low-reuse data from storage to the main memory without
being limited by DRAM capacity. We evaluate I/O overheads
using: 1) a cost-optimized SSD (SSD-C) [85] with a SATA3 inter-
face [188], 2) a performance-optimized SSD (SSD-P) [84] with a
PCIe Gen4 interface [189], and 3) a hypothetical configuration
with zero performance overhead due to storage I/O (No-I/O).
SSD-P provides an order-of-magnitude higher sequential-read
bandwidth than SSD-C (detailed configurations in Table 1).
However, scaling up storage capacity only using performance-
optimized SSDs is challenging due to their much higher prices
(e.g., [190–192]) and fewer PCIe slots compared to SATA slots
available on servers (e.g., [186]).
Results andAnalysis. Fig. 3 shows the performance (through-
put in terms of #queries/sec) of the tools normalized to No-I/O.
We make three key observations. First, I/O overhead has a
large impact on performance for all cases. Compared to SSD-C
(SSD-P), No-I/O leads to 9.4× (1.7×) and 32.9× (3.6×) bet-
ter performance in R-Qry and S-Qry (averaged across both
databases), respectively. While both baselines significantly
suffer from large I/O overhead, we observe a relatively larger
impact on S-Qry due to its lower data reuse compared to R-Qry.
This is because the lower the data reuse, the less effectively the
initial I/O cost can be amortized. Second, even using the costly
state-of-the-art SSD (SSD-P) does not alleviate this overhead,
leaving large performance gaps between SSD-P and No-I/O in

4We experiment with both techniques of accessing the database devised
in the R-Qry baseline [73] and report the best timing. The first technique uses
mmap to access the database, while the second technique loads the entire
database from the SSD to DRAM as the first step when the analysis starts. In
this experiment, the second approach performs slightly better since, when
analyzing our read set, the application accesses most parts of the database.

0
0.2
0.4
0.6
0.8
1

0.3 0.6

SSD-C SSD-P No-I/O

(a)

No
rm
al
iz
ed

Th
ro
ug
hp
ut

Database	Size	(Terabyte)
0.7 1.4

(b)

Database	Size	(Terabyte)

Figure 3: Performance of (a) R-Qry and (b) S-Qry under different
storage configurations and database sizes.

both tools. Third, I/O overhead increases as the databases grow.
For example, in R-Qry, the performance gap between SSD-C and
No-I/O widens from 7.1× to 12.5× as the database expands
from 0.3 TB to 0.6 TB. Based on these observations, We con-
clude that I/O accesses lead to large overheads in metagenomic
analysis, an issue expected to worsen in the future.
This I/O overhead, stemming from the need to move large

amounts of low-reuse data, is a fundamental problem that is
hard to avoid. One might think it is possible to avoid this over-
head by 1) using sampling techniques to shrink database sizes
(e.g., [48–53]) or 2) keeping all data required by metagenomic
analysis completely and always resident in main memory. Nei-
ther of these solutions is suitable. The first approach inevitably
reduces accuracy [18, 54, 59] to levels unacceptable for many
use cases (e.g., [18, 42, 54–59]). The second approach is en-
ergy inefficient, costly, unscalable, and unsustainable due to
two reasons. First, the sizes of metagenomic databases (which
are already large, i.e., in some recent examples, exceeding a
hundred terabytes [36, 37]) have been increasing rapidly. For
example, recent trends show the doubling of different impor-
tant databases in only several months [25, 40, 42]. Second,
regardless of the sizes of individual databases, different analy-
ses need different databases, with information from different
sets of genomes or with varying parameters. For example,
a medical center may use various databases for its patients
based on the patients’ conditions [172] (e.g., for different viral
infections [48, 193], sepsis [11], etc.). Therefore, it is inefficient
and unsustainable to maintain all data required by all possible
analyses in DRAM at all times.5
The I/O impact on end-to-end performance becomes even

more prominent in emerging systems in which other bottle-
necks are alleviated. For example, while metagenomics can
benefit from near-data processing at the main memory level,
i.e., processing-in-memory (PIM) [64, 65, 67, 68, 197–201], these
approaches still incur the overhead of moving the large, low
reuse data from the storage system. In fact, by alleviating other
bottlenecks, the impact of I/O on end-to-end performance
increases. For example, for the 0.3-TB and 0.6-TB Kraken2
databases, using a state-of-the-art PIM accelerator [64] of
Kraken2, No-I/O is on average 26.1× (3.0×) faster than SSD-C
(SSD-P). We conclude that while accelerating other bottlenecks
in metagenomic analysis (e.g., main memory bottlenecks) can
provide significant benefits, doing so does not alleviate the
overheads of moving large, low-reuse data from the storage
system.
3.3. Our Goal
ISP can be a fundamental solution for reducing data move-

ment. However, designing an ISP system for metagenomics
5Ultimately, these are the same reasons that the metagenomics community

has been investigating storage efficiency (e.g., the aforementioned sampling
techniques [48–53]) as opposed to merely relying on scaling the system’s main
memory [35, 57, 194–196].

5

is challenging because none of the existing approaches can
be directly implemented as an ISP system effectively due to
an SSD’s constrained hardware resources. Techniques such
as R-Qry hinder leveraging ISP’s large potential by prevent-
ing the full utilization of the SSD’s internal bandwidth due
to costly conflicts in internal SSD resources [79–81] caused
by random accesses. Techniques such as S-Qry predominantly
incur more suitable streaming accesses, but at the cost of more
computation and main memory capacity requirements, pos-
ing challenges for ISP. Therefore, directly adopting existing
metagenomic analysis approaches in storage incurs perfor-
mance, energy, and lifetime overheads. Our goal in this work
is to improve the performance and efficiency of metagenomic
analysis by reducing the large data movement overhead from
the storage system in a cost-effective manner.
4. MegIS
We propose MegIS, the first ISP system designed for the

end-to-end metagenomic analysis pipeline to reduce its data
movement overheads from the storage system. MegIS is pri-
marily designed as a system for accelerating metagenomic
analysis. MegIS extends the existing SSD controller and FTL
without impacting the baseline SSD functionality. Therefore,
when metagenomic acceleration is not in progress, the SSD
can be accessible for all other applications, similar to a general-
purpose SSD.
We address the challenges of ISP for metagenomic analy-

sis via hardware/software co-design to enable what we call
cooperative ISP. In other words, we do not solely focus on pro-
cessing inside the storage system but, instead, we exploit the
strengths of processing both inside and outside the storage
system. MegIS enables an efficient pipeline between the host
system and the storage system to maximally leverage and or-
chestrate the capabilities of both systems.

It is possible for MegIS’s ISP steps to run on our lightweight
specialized ISP accelerators or, alternatively, on the existing em-
bedded cores in the SSD controller6 or other general-purpose
ISP systems (e.g., [105, 143, 157, 159]). This is because, leverag-
ing our optimizations, MegIS’s ISP steps require only simple
computation and small buffers. Efficiently performing metage-
nomics on any of these underlying hardware units requires
MegIS’s specialized task partitioning, data/computation flow
coordination, storage technology-aware algorithmic optimiza-
tions, and data mapping. The ability to leverage existing hard-
ware units (embedded SSD cores or general-purpose ISP sys-
tems) helps with MegIS’s ease of adoption. Ultimately, choos-
ing between different MegIS configurations (our specialized
lightweight accelerators or general-purpose hardware) is a
design decision that has various tradeoffs, with specialized
accelerators achieving the highest performance and power
efficiency (§6.1).
4.1. Overview

Fig. 4 shows an overview of MegIS’s steps. We design MegIS
as an efficient pipeline in the SSD and the host system. We
develop MegIS FTL (§4.5), which is responsible for communi-
cation with the host system and data flow across the SSD hard-
ware components (e.g., NAND flash chips, internal DRAM, and

6These cores are available for MegIS’s ISP since we envision that during
metagenomic acceleration, MegIS is not used as a general-purpose SSD and
does not run the baseline FTL. Instead, it runs MegIS FTL, which only performs
lightweight and infrequent tasks during ISP (see §4.5).

DRAM

M
eg
IS
-E
na
bl
ed
	S
SD
	❶Start

❷Prepare

Standard
Metadata

MegIS
Metadata

❹Send	
Processed	
Queries

⋯

Cntrl

ACC

Cntrl

ACC

SSD	
CntrlCores

MegIS
FTLH

os
t	

❺Finding		
Species

❼Transfer
Data	for	
Further	Analysis

❻Data	Preparation
for	Abundance	Estimation

Channel#NChannel#1

❸
Pr
ep
ar
e	

In
pu
t	Q
ue
ri
es

Figure 4: Overview of MegIS.

hardware accelerators) when running metagenomic analysis.
Upon receiving a notification from the host to initiate metage-
nomic analysis (1 in Fig. 4), MegIS readies itself by loading
the necessary MegIS FTL metadata (2). After this preparation,
MegIS starts its three-step execution. In Step 1 (§4.2), the host
processes the input read queries (3) and transfers them in
batches to the SSD (4). In Step 2 (§4.3), the ISP units (ACC in
Fig. 4) find the species present in the sample (5). Steps 1 and
2 run in a pipelined manner. In Step 3 (§4.4), MegIS prepares
(6) and transfers (7) the data needed for any further analysis.
By doing so, MegIS facilitates integration with different abun-
dance estimation approaches. MegIS leverages the SSD’s full
internal bandwidth since it avoids channel conflicts (due to its
specialized data/control flow) and frequent management tasks
(by not requiring writes during its ISP steps).
4.2. Step 1: Preparing the Input Queries
In this step, MegIS prepares the input read queries in a

metagenomic sample for metagenomic analysis. MegIS works
with lexicographically-sorted data structures to avoid expen-
sive random accesses to the SSD (similar to S-Qry, described
in §2.1). Like many other metagenomic tools (e.g., [48, 49, 51–
53,67, 73–78,82, 83, 90]), we assume the sorted k-mer databases
are pre-built before the analysis. However, sorting k-mers ex-
tracted from the input query read set is inefficient to perform
offline due to the need to store a large data structure (sorted
k-mer set) with each sample, potentially larger than the sample
itself, causing significant storage capacity waste. Therefore, to
prepare the input queries, MegIS 1) extracts k-mers from the
sample (§4.2.1), 2) sorts the k-mers (§4.2.2), and if needed, 3)
prunes some k-mers according to user-defined criteria (§4.2.3).
We execute this step in the host system for three reasons.

First, this step benefits from the relatively larger DRAM and
more powerful computation resources in the host. Second, due
to the large host-side DRAM, performing this step in the host
leads to significantly fewer writes to the flash chips, positively
impacting lifetime. For typical metagenomic read sets, storing
k-mers extracted from reads within a sample takes tens of
gigabytes (e.g., on average 60 GB with standard CAMI read
sets [59]). While generating and sorting k-mers inside the SSD
is possible, it would necessitate frequent writes to flash chips
or much larger DRAM. Third, by leveraging the host system
for this step, we enable pipelining and overlapping Step 1 with
Step 2 (which searches the large, low-reuse database).

To efficiently execute Step 1 on the host system, we need to
ensure two points. First, partitioning the application between
the host system and the SSD should not incur significant over-
heads due to data transfer time. Second, while it is reasonable
in most cases to expect the host DRAM to be large enough
to contain all extracted k-mers from a sample, MegIS should
accommodate scenarios where this is not the case and mini-
mize the performance, lifetime, and endurance overheads of
writes to flash chips due to page swaps (i.e., moving data back-

6

and-forth between the host DRAM and the SSD when the host
DRAM is smaller than the application’s working set size).
The sequences in MegIS’s databases are encoded with two

bits per character (i.e., A, C, G, T in DNA alphabet) during their
offline generation. For the read sets, MegIS is able to work with
different formats. We perform the first analysis step (Step 1) in
the host system so that any format conversion can be flexibly
incorporated there (e.g., from ASCII or binary to 2-bit encod-
ing). The overhead of format conversion is negligible since
it involves a straightforward transformation of the four nu-
cleotide bases to the 2-bit encoded format. For the remainder
of MegIS’s pipeline, we use the 2-bit encoding.
4.2.1. K-mer Extraction. To reduce data transfer overhead
between different parts of the application that execute in the
host system and in the storage system, we propose a new input
processing scheme by improving upon the input processing
scheme in KMC [202]. We partition the k-mers into buckets,
each corresponding to a lexicographical range. This enables
overlapping the k-mer sorting and transfer of a bucket to the
SSDwith the ISP operations of Step 2 (§4.3) on previously trans-
ferred buckets. This is because the database k-mers are also
sorted and can already be accessed within the corresponding
range. Fig. 5 shows an overview of MegIS’s k-mer extraction.
The host reads the input reads from the storage system (1
in Fig. 5), extracts their k-mers (2), and stores them in the
buckets (3).7 In situations where a sample’s extracted k-mers
do not fit in the host DRAM, MegIS pins some buckets to the
host DRAM (e.g., Buckets 1 to N − 1 in Fig. 5) and uses the
SSD to store the others. This way, k-mers belonging to buck-
ets in the host DRAM do not move back and forth between
the host DRAM and the SSD (4). To reduce the overhead
of accessing buckets in the SSD, MegIS takes two measures.
First, MegIS allocates buffers in the host DRAM specifically
for buckets in the SSD. Once these buffers are full, it efficiently
transfers their contents to the SSD, maximizing the use of the
sequential-write bandwidth. Second, we map each bucket’s k-
mers across SSD channels evenly for parallelism. Since MegIS
does not require writes to the flash chips after this step (i.e.,
K-mer Extraction in Step 1), it can flush all of the FTL metadata
for write-related management to free up internal DRAM for
the next steps (details in §4.5).

MegIS-Enabled	SSD

Bu
ck
et
#N

Bu
ffe
r

⋯

ACGTTACGATTAG
ACGTT

⋯

⋯ ⋯

❶Read
Input	
Queries

❷Extract
K-mers

❸Partition	to	Buckets Host	DRAMHost	CPU

❹Store	the	Bucket

Read

K-
m
er
s

[AAA,	CAA) [CAA,	CTT) [GCC,	TCA) [TCA,	TTT]

Bucket’s	Range

CGTTA
GTTAC

ACGTT

Bu
ck
et
#1

⋯

CGTTA

Bu
ck
et
#2

⋯

GTTAC

Bu
ck
et
#N
-1

Buckets	Pinned	to	Host	DRAM

Figure 5: Overview of the k-mer extraction process in MegIS.

4.2.2. Sorting. After generating all k-mer buckets, MegIS
proceeds to sort the k-mers within the individual buckets. As
soon as a specific bucket i is sorted, MegIS transfers this bucket
to the DRAM inside the SSD in batches (to undergo Step 2, as
described in §4.3). Meanwhile, during the transfer of bucket i,
MegIS advances to sort bucket i + 1. MegIS can orthogonally
use a sorting accelerator (e.g., [203–205]) to perform sorting.

7To prevent bucket size imbalance, we initially create preliminary buckets
for a small k-mer subset. In case of imbalance, we merge some buckets to
satisfy a user-defined bucket count (default 512).

4.2.3. Excluding K-mers. MegIS, like various tools [5, 75,
82, 202, 206, 207], can exclude k-mers based on user-defined
frequencies to improve accuracy. Users can exclude 1) overly
common (i.e., indiscriminative) k-mers and 2) very infrequent
k-mers (e.g., those that appear only once), which may represent
sequencing errors or low-abundance organisms that are hard
to distinguish from random occurrences. Exclusion follows
sorting, where k-mers are already counted. While the size of
the extracted query k-mers (§4.2.1) can be large (on average
60 GB in our experiments), the size of the k-mer set selected
to go to Step 2 is much smaller (on average 6.5 GB) and is
significantly smaller than the database that may reach several
terabytes [34–39].
4.3. Step 2: Finding Candidate Species
In Step 2, MegIS finds the species present in the sample

by 1) intersecting the query k-mers and the database k-mers,
and 2) finding the taxIDs of the intersecting k-mers. We per-
form this stage inside the SSD since it requires streaming the
large database with low reuse and involves only lightweight
computation. This enables MegIS to leverage the SSD’s large
internal bandwidth and alleviate the overall burden of mov-
ing/analyzing large, low-reuse data from the rest of the system.
Considering the SSD’s hardware limitations, MegIS should

leverage the full internal bandwidth without requiring expen-
sive hardware resources inside the SSD (e.g., large internal
DRAM size/bandwidth and costly logic units). Performing this
step effectively inside the SSD requires efficient coordination
between the SSD and the host, mapping, hardware design, and
storage technology-aware algorithmic optimizations.
4.3.1. Intersection Finding. In this step, MegIS finds the
intersecting k-mers, i.e., k-mers present in both the query k-
mer buckets arriving from the host system and the large k-mer
database stored in the flash chips.

Relying solely on the SSD’s internal DRAM to 1) buffer the
query k-mers arriving from the host system and the database
k-mers arriving from the SSD channels at full bandwidth and
2) stream through both to find their intersection can pressure
the valuable internal DRAM bandwidth. For example, reading
the database from the SSD channels at full bandwidth in a high-
end SSD can already exceed the LPDDR4 DRAM bandwidth
used in current SSDs [84,105,208] and even the 16-GB/s DDR4
bandwidth [105, 187]. To address this challenge, we adopt an
approach similar to [105] and operate on data fetched from
flash chips without buffering them in the internal DRAM. De-
spite its benefits, this approach requires large buffers (64 KB
for input and 64 KB for output) per channel.
To facilitate low-cost computation on flash data streams,

we leverage two key features of MegIS to find the minimum
required buffer size. First, the computation in this step is
lightweight and does not require a large buffer for data await-
ing computation. Second, data is uniformly spread across chan-
nels, with each compute unit handling data from one channel.
Based on these, we directly read data from the flash chips and
include two k-mer registers per channel. One register holds a
k-mer as the computation input, while the other register stores
the subsequent k-mer as it is read from the flash chips. This
way, by only using two registers, MegIS directly computes on
the flash data stream at low cost.
Fig. 6 shows the overview of MegIS’s intersection finding

process. First, MegIS reads the query k-mers to the internal

7

SSD	Controller

Intersect

Intersection
Curr.	K-mer Register

Intersect

❶Fetching	Query	K-mers	from	the	Host	

❷ Intersection	Finding

❸Write	to	DRAM
❸

MegIS-
Enabled	
SSD

Next	K-mer Register
Curr.	K-mer Register
Next	K-mer Register

AAAAA

TAACC

CAAAA

Ch
an
ne
l#
1

⋯

AGTTT

TTGGT

CCGTG

Ch
an
ne
l#
N⋯

⋯

⋯

Internal
DRAM

B#
i

B#
i-1

CGTCA

AAAAA

⋯ ⋯

⋯
⋯

Figure 6: Overview of the intersection finding process inMegIS.

DRAM in batches (1 in Fig. 6). Second, it concurrently reads
both the sorted query k-mers (from the internal DRAM) and
the sorted database k-mers (from the flash chips), performing
a comparison to find their intersection (2) using per-channel
Intersect units located in the SSD controller. Third, MegIS
writes the intersecting k-mers to the internal DRAM for further
analysis (3).
Fetching Query K-mers. To efficiently use external band-
width, MegIS moves buckets from the host system to the inter-
nal DRAM in batches. We manage two batches in the internal
DRAM to overlap transfer and intersection finding. For an SSD
with 8 channels, 4 dies/channel, 2 planes/die, and 16-KiB pages,
MegIS requires space for two 1-MiB batches (i.e., B#i − 1 and
B#i in Fig. 6) in the internal DRAM.
Intersection Finding. MegIS reads the query k-mers from
the internal DRAM and the database k-mers from the flash
chips. Intersection Finding runs in a pipelined manner with
Fetching Query K-mers. We store the database evenly across
different channels to leverage the full internal bandwidth when
sequentially reading data using multi-plane operations. MegIS
finds the intersecting k-mers as follows: If a database k-mer
equals a query k-mer, MegIS records the k-mer as an intersect-
ing k-mer. If a query k-mer is larger (smaller), MegIS reads the
next database (query) k-mer. MegIS’s Control Unit, located on
the SSD controller, receives the comparison results and issues
the control signals accordingly.8
Storing the Intersecting K-mers. MegIS stores the intersect-
ing k-mers in the SSD’s internal DRAM.9 The internal DRAM
needs to support 1) fetching the queries, 2) reading them out,
3) storing the intersection, and 4) reading FTL metadata. Since
the query k-mer set, the intersection, and the FTL metadata
(FTL details in §4.5) are significantly smaller than the database,
they can be accessed at a much smaller bandwidth than the
bandwidth required for reading the database. For example, for
our datasets in §5, when fully leveraging SSD-P’s internal flash
bandwidth by reading the database from all flash channels,
MegIS requires only 2.4 GB/s of DRAM bandwidth to access
all datasets stored in the internal DRAM.
4.3.2. Retrieving TaxIDs. MegIS finds the taxIDs of the
species corresponding to the intersecting k-mers by looking
up the intersecting k-mers in a pre-built sketch database. Each
sketch is a small representative subset of k-mers associated
with a given taxID. A sketch database stores the k-mer sketches
and their associated taxIDs for a given set of species. Similar to
[82], we use CMash [209] to generate sketches. MegIS can also

8Figs. 5, 6, and 8 exclude Control Unit and its connections for readability.
9The intersecting k-mers do not have a strict size requirement and can use

the available internal DRAM’s space opportunistically. Usually, its small size
allows it to fully fit in the internal DRAM. However, in a case where it does
not, MegIS starts the taxID retrieval (§4.3.2) for the already-found intersecting
k-mers; then resumes this step, overwriting the old intersecting k-mers.

use other sketch generation methods. MegIS flexibly supports
variable-sized k-mers in its sketch database. As shown by prior
works [48,209], while longer k-mers are more unique and offer
greater discrimination, they may result in missing matches
between the intersecting k-mers and sketches. In such cases,
users may also search for smaller k-mers by looking up the
prefixes of the intersecting k-mers in the sketch database. This
enables finding additional matches and increasing the true
positive rate.

Finding taxIDs for variable-sized k-mers is challenging since
it requires many pointer-chasing operations on a large data
structure that may not fit in the SSD’s internal DRAM. To sup-
port variable-sized k-mers, some approaches (e.g., [48, 51, 82,
209, 210]) provide data structures to encode the k-mer infor-
mation in a space-efficient manner. For example, CMash [209]
encodes k-mers of variable sizes in a ternary search tree. Fig. 7
shows sketch databases with variable-sized k-mers (k = 5, 4,
and 3) alongside their taxIDs in a separate tables, as used by
some prior approaches [90,211], and b in a ternary search tree.
This tree structure is devised to 1) save space and 2) retrieve
the taxIDs for all k-mers with k ≤ kmax that are prefixes of
a query kmax-mer. For example, as shown in Fig. 7, when
traversing the tree to look up the 5-mer AATCC, we can look up
the 4-mer AATC during the same traversal. Despite its benefits,
this approach requires up to kmax pointer-chasing operations
for each lookup. Performing these operations inside the SSD is
challenging since the tree can be larger than the SSD’s internal
DRAM, and pointer chasing on flash arrays is expensive due
to their significantly larger latency compared to DRAM.

While MegIS can perform taxID retrieval in the host system,
we identify a new optimization opportunity leveraging unique
features of ISP (i.e., large internal bandwidth and storage ca-
pacity), which avoids pointer-chasing at the cost of larger data
structures. Fig. 7 c shows an overview of our approach, K-mer
Sketch Streaming (KSS). For k-mers with k = kmax, MegIS stores
the k-mer sketches and their taxIDs similar to a . MegIS keeps
this table in a lexicographically-sorted order. For each smaller
k-mer (with k < kmax), MegIS only stores the taxIDs that
are not attributed to their corresponding larger, more unique,
k-mer. For these smaller k-mers, MegIS does not store the
k-mer itself and instead, uses the prefixes of the kmax-mers to
retrieve the smaller k-mers. MegIS allows for taxID retrieval by
sequentially streaming through the intersecting k-mers (which
are already sorted) and the KSS tables. While the KSS data
structure is larger than the corresponding ternary search tree
b , it is much more suitable for ISP due to its streaming ac-
cess feature. KSS can also be efficient for processing outside
the storage system with SSDs with high external bandwidth
(§6.1). KSS leads to 7.5× smaller data structures compared to

3-mer ID
AAA 1,	6,	8
AAT 2,3,	5
… …

aa

ab

5-mer ID
AAAAA 1
AAAAC 6
AATCC 2
… …

4-mer ID
AAAA 1,	6
AATC 2,	3
… …

A A A/8 A A/1

C/6

T/5 C/3 C/2

Ternary	Search	Tree

Baseline	K-mer	Sketch	Tables

5-mer ID
AAAAA 1
AAAAC 6
AATCC 2
… …

ID
-
3
…

ID
8
5
…

4-mer	i

4-mer	i+1	

ac K-mer	Sketch	Streaming	Tables
4-mer 3-mer

Figure 7: Overview of sketch data structures.

8

the 107-GB data structure in a , and 2.1× larger compared to
b (dataset details in §5).
Fig. 8 shows an overview of MegIS’s taxID retrieval process.

As an example, we demonstrate retrieving 5- and 4-mers. First,
MegIS reads the intersecting k-mers (i.e., 5-mers) from the inter-
nal DRAM and concurrently reads the 5-mer sketches and their
IDs from an SSD channel to find their matches (using the same
Intersect unit in §4.3.1) (1). Second, to find 4-mer matches,
MegIS compares the prefixes of the intersecting 5-mers with
the prefixes of the 5-mer sketches (2). MegIS incorporates a
lightweight Index Generator. It compares the 4-mer prefixes
of each pair of consecutive 5-mers. When the prefixes differ
(indicating the start of a new 4-mer), it identifies the new prefix
as the new 4-mer and reads the next 4-mer taxID from a SSD
channel. Third, MegIS sends the retrieved taxIDs to the host
(3) as the IDs of the candidate species present in the sample.

SSD	Controller
Intersection

Curr.	Register

MegIS-
Enabled	
SSDCh

an
ne
l#
1

Ch
an
ne
l#
2

Internal
DRAM

5-mer 5-mer	ID
AAAAA 1
AAAAC 6
AATCC 2
… …

4-mer	ID
-
3
…

AGTTT
⋯

Idx.	
Gen

AAAAC

Next	Register
AATCC

Move	to	
Next	4-mer

❶Intersect	5-mers ❷Intersect	4-mers

6

2

Curr.	Register
AAAA

Next	Register
AATC

-

3
AATC

Intersect Intersect

❸Send	TaxIDs	to	Host

Figure 8: Overview of the TaxID retrieval process in MegIS.

4.4. Step 3: Abundance Estimation
For applications that require abundance estimation, MegIS

integrates further analysis on the candidate species identi-
fied as present in the sample at the end of Step 2. MegIS can
flexibly integrate with different approaches to abundance esti-
mation used in various tools, such as (i) lightweight statistics
(e.g., [89–91]) or (ii) more accurate and costly read mapping
(e.g., [48, 54, 82]), where the input read set is mapped to the
reference genomes of candidate species present in the sam-
ple. Based on the relative number of reads that map to each
species’ reference genome, we can determine the occurrence
frequencies of different species. MegIS can integrate with
different existing statistical approaches or read mapping, per-
formed in the host or an accelerator, specialized for short reads
(e.g., [4, 212, 213]) or long reads (e.g., [4, 7, 212]). We note that
Steps 1 and 2 of MegIS are based on k-mers extracted from the
reads and do not depend on a specific read length.
While the lightweight statistical approaches can work di-

rectly on the output of Step 2, MegIS requires additional data
preparation to facilitate read mapping. The read mapper re-
quires the query reads and a unified index of the reference
genomes of the candidate species present in the sample [5].
In comparison to using individual indexes for each species,
the unified index eliminates the need to search through each
index separately, thereby reducing the overheads of the read
mapping process. Building indexes for individual species is
a one-time task. Yet, creating a unified index for the initially
unidentified species present in the sample cannot be done of-
fline. MegIS facilitates index generation for read mapping by
generating a unified index in the SSD. Fig. 9 shows an example
of the process of unified index generation in MegIS. Each index
entry shows a k-mer and its location in that species’ reference

K-mer Loc.
ATT 14
CCA 9
GCT 5
… …

K-mer Loc.
AAG 2
CCA 21
TGC 4
… …

K-mer Loc.
AAG 1002
ATT 14
CCA 9,	1021
GCT 5
TGC 1004
… …

Reference	Index	
Organism	A

Reference	Index	
Organism	B

Merge

Unified
Reference	Index

Figure 9: Merging the reference indexes to facilitate read map-
ping during abundance estimation.

genome. MegIS reads each index stored in the flash chips se-
quentially and merges their entries into a unified index. When
MegIS finds a common k-mer (e.g., CCA in Fig. 9), it stores the
corresponding location of the k-mer in both reference genomes,
adjusting the locations with appropriate offsets based on the
reference genome sizes. After generating the unified index,
MegIS transfers the index to the host system or an accelerator
to perform read mapping for abundance estimation.
4.5. MegIS FTL
MegIS FTL needs simple changes to the baseline FTL to

handle communication between the host and the SSD.
FTL Metadata. At the beginning of MegIS’s operation as a
metagenomic acceleration framework, MegIS FTL maintains
all metadata of the regular FTL in the internal DRAM. For
the only step that requires writes to the NAND flash chips
(§4.2.1, K-mer Extraction in the host), MegIS FTL uses the write-
related metadata (e.g., L2P, bad-block information). After the
K-mer Extraction step, MegIS does not require writes to the
NAND flash chips, so it flushes the regular L2P metadata and
loads MegIS FTL’s L2P metadata while still keeping the other
metadata of a regular FTL.

MegIS is designed to only access the underlying flash chips
sequentially, which inherently reduces the size of the required
L2P mapping metadata. In regular FTL, L2P mappings domi-
nate the SSD’s internal DRAM capacity due to the page-level
granularity of mappings [85, 110, 214]. However, by accessing
data sequentially, MegIS FTL circumvents the need for such
detailed page-level mappings. Instead, MegIS FTL utilizes a
more coarse-grained block-level mapping, which substantially
reduces the size of L2P metadata. Therefore, flushing regular
L2P mapping metadata into flash chips and using MegIS FTL’s
metadata enables us to exploit most of the internal DRAM
bandwidth and capacity during ISP.
Data Placement. Fig. 10 shows how MegIS FTL manages
the target data (i.e., databases10) stored in NAND flash with
reduced L2P metadata. When storing a database in the SSD 1 ,
MegIS FTL evenly and sequentially distributes the data across
all channels 2 while ensuring that every active block [215]
(i.e., blocks available for write operations in the SSD) in dif-

…

Channel#0

…

Channel#1

…

Ch#(N-1)

LPA:	73 DP0
74 DP1
75 DP2
… …

k+73 DPk
k+74 DPk+1
k+75 DPk+2

… …

Logical	Page	Address

Database	Page
❶Database	
(S	Pages)

DP0
DPN
DP2N
…

DP1
DPN+1
DP2N+1
…

DPN-1
DP2N-1
DP3N-1
…

DPk
DPk+N
DPk+2N
…

DPk+1
DPk+N+1
DPk+2N+1
…

DPk+N-1
DPk+2N-1
DPk+3N-1
…

PBA:	32

PBA:	56

PBA:	73

PBA:	87

PBA:	232

PBA:	256

Physical	Block	Address

…

❷Physical	Layout

❸MegIS L2P

(i)	Start	Addresses
73à 32	(Page	0)

(ii)	Database	Size:	S

Sequential	access

(iii)	Sequence	of	Blocks	
Ch#0: 32à56à…
Ch#1: 73à87à…
Ch#N-1: 232à256à……

…

Figure 10: Data layout and mapping data structure in MegIS.

10K-mer databases (§4.3.1) and sketch databases (§4.3.1) are the only data
structures accessed from NAND flash memory during MegIS’s ISP operations.

9

ferent channels has the same page offset. Since MegIS always
accesses the database sequentially, MegIS FTL’s L2P mapping
metadata 3 consists of (i) the mapping between start logical
page address (LPA) and physical page address (PPA), (ii) the
database size, and (iii) the sequence of physical block addresses
storing the database. As shown in Fig. 10, MegIS FTL can se-
quentially read the stored database from the starting LPAwhile
performing reads in a round-robin manner across channels. To
do so, MegIS FTL just increments the PPA within a physical
block and resets the PPA when reading the next block.

Compared to the regular L2P, whose space overhead is 0.1%
of stored data (4 bytes per 4 KiB), MegIS’s L2P is very small.
For example, MegIS only requires ∼1.3 MB to store a 4-TB
database, assuming a physical block size of 12 MB: 4 bytes
for each of the 349,525 used blocks (and a few bytes for the
start L2P mapping and database size). The only metadata other
than L2P that must be kept during ISP is the per-block access
count for read-disturbance management [100], so the total
MegIS-FTL metadata size is up to 2.6 MB.
SSD Management Tasks. MegIS’s ISP accelerators are lo-
cated in the SSD controller and access data after ECC. ECC
does not restrict MegIS’s ISP performance. Modern SSDs are
designed with ECC capabilities that match the full internal
bandwidth of the SSD to support both I/O requests and in-
ternal data migrations due to management tasks like garbage
collection [71, 72, 116].

MegIS performs other tasks for ensuring reliability (e.g., re-
fresh to prevent uncorrectable errors [71, 72, 97–104]) before
or after the ISP because 1) the duration of each MegIS pro-
cess is significantly smaller than the manufacturer-specified
threshold for reliable retention age (e.g., one year [216]), and
2) MegIS avoids read disturbance errors [100] during ISP due
to its sequential low-reuse accesses.
4.6. Storage Interface Commands

MegIS requires three newNVMe commands. First, MegIS_Init
initiates the metagenomic analysis and communicates the size
and starting address of the space in the host DRAM that is avail-
able for MegIS’s operations. Upon receiving this command,
MegIS readies itself to work in the metagenomic acceleration
mode (§4.1). During metagenomic analysis steps, MegIS FTL
and MegIS’s FSM controller handle the data/control flow. Sec-
ond, MegIS_Step communicates the start and end of each step
executed in the host to the SSD, enabling MegIS to manage
control and data flow accordingly. MegIS_Step specifies the
step performed in the host system, such as k-mer extraction
(§4.2.1) or sorting (§4.2.2), with an input argument. Each time
this command with the same argument is sent, it alternates
between marking the start and the end of a step. After com-
pleting the metagenomic analysis, MegIS switches back to
operating as a baseline SSD. Third, MegIS_Write is a special-
ized write operation that updates MegIS FTL’s small mapping
metadata whenever metagenomic data is written to the SSD.
MegIS_Write is similar to the regular NVMe write command,
except that it updates mapping metadata in both the regular
FTL and MegIS FTL.
4.7. Multi-Sample Analysis
For some use cases (e.g., globally tracing antimicrobial

resistance [217], associating gut microbiomes to health sta-
tus [1, 218]), a metagenomic study can have multiple read sets

(i.e., samples) that need to access the same database. If the
host’s DRAM is larger than the k-mer sizes extracted from
a sample, we use the available DRAM opportunistically to
buffer k-mers extracted from several samples. This way, MegIS
streams through one database only once. Fig. 11 shows the
timeline of analyzing a single (S) or multiple (M) samples in
the baseline (Base), in our proposed optimized approach in
software (Opt), and in MegIS (MS). To accelerate input query
processing (§4.2) when analyzing several input query samples,
MegIS can be flexibly integrated with a sorting accelerator
(e.g., [203–205]) and further improve end-to-end performance.

K-mer	Extraction
Sorting	+	K-mer	Exclusion
Intersection	Finding
Tax	ID	Retrieval
Transfer

Time

Base-S
MS-S

Base-M
Opt-M

MS-M

Figure 11: Timeline of analyzing single or multiple samples in
the baseline and MegIS.

5. Evaluation Methodology
Performance. We design a simulator that models all of
MegIS’s components, including host operations, accessing
flash chips, internal DRAM, in-storage accelerator, and host-
SSD interfaces. We feed the latency and throughput of each
component to this simulator. For the components in the
hardware-based steps (e.g., ISP units in Steps 2 and 3): We
implement MegIS’s logic components in Verilog. We synthe-
size them using the Synopsys Design Compiler [219] with a
65 nm library [220] and perform place-and-route using Ca-
dence Innovus [221]. We use two state-of-the-art simulators,
Ramulator [222, 223] to model SSD’s internal DRAM, and
MQSim [224, 225] to model SSD’s internal operations. For
the components in the software-based step (e.g., host oper-
ations in Step 1), we measure performance on a real system,
an AMD® EPYC® 7742 CPU [186] with 128 physical cores and
1-TB DRAM (in all experiments unless stated otherwise). For
the software baselines, we measure performance on this real
system, with best-performing thread counts. The source code
of MegIS, scripts, and datasets can be freely downloaded from
https://github.com/CMU-SAFARI/MegIS.
SSDs. We use SSD-C [85] and SSD-P [84] as described in §3.2 in
our real system experiments. In our MQSim simulations for the
ISP steps, we faithfully model the SSDs with the configurations
summarized in Table 1.
Area and Power. For logic components, we use the results
from our Design Compiler synthesis. For SSD power, we use
the values of a Samsung 3D NAND flash-based SSD [87]. For
DRAM power, we base the values on a DDR4 model [187, 227].
For the CPU cores, we use AMD® µProf [228].
Baseline Metagenomic Tools. We use a state-of-the-art
performance-optimized (P-Opt) tool, Kraken2 + Bracken [49],
and a state-of-the-art accuracy-optimized (A-Opt) tool, Metal-
ign [82]. Particularly, for the presence/absence task, we use
Kraken2 without Bracken, and Metalign without mapping (i.e.,
only KMC [202] + CMash [209]). For abundance estimation,
we use Kraken2 + Bracken, and full Metalign. A-Opt achieves
significantly higher accuracy compared to P-Opt [59, 82]. In
particular, A-Opt leads to 4.6–5.2× higher F1 scores and 3–24%
lower L1 norm error across all tested inputs. One major rea-

10

Table 1: SSD configurations.

Specification SSD-C SSD-P

General 48-WL-layer 3D TLC NAND flash-based SSD
4 TB capacity, 4 GB internal LPDDR4 DRAM [226]

Bandwidth
(BW)

600 MB/s interface BW
(SATA3);

560 MB/s sequential-read BW
1.2-GB/s channel I/O rate

8 GB/s interface BW
(4-lane PCIe Gen4);

7 GB/s sequential-read BW
1.2-GB/s channel I/O rate

NAND
Config

8 channels, 8 dies/channel,
4 planes/dies, 2,048 blocks/plane,
196 WLs/block, 16 KiB/page
(4/8/16 channels in Fig. 17)

16 channels, 8 dies/channel,
2 planes/dies, 2,048 blocks/plane,
196 WLs/block, 16 KiB/page
(8/16/32 channels in Fig. 17)

Latencies Read (tR): 52.5 µs, Program (tPROG): 700 µs

Embedded
Cores 3 ARM Cortex-R4 cores [86] 4 ARM Cortex-R4 cores [86]

son is that A-Opt uses larger and richer databases compared
to performance-optimized P-Opt. MegIS’s end-to-end accu-
racy matches the accuracy of A-Opt because MegIS’s databases
encode the same set of k-mers and sketches as A-Opt.
For both Metalign and MegIS, we use GenCache [212] for

mapping. We use the mapping throughput as reported by the
original paper [212]. MegIS can be flexibly integrated with
other mappers. We also evaluate a state-of-the-art PIM k-mer
matching accelerator [64] for accelerating Kraken2’s pipeline.
We use the k-mer matching performance as reported by the
original paper [64].
Datasets. We use three query read sets from the commonly-
used CAMI benchmark [229], with low, medium, and high
genetic diversity (i.e., CAMI-L, CAMI-M, and CAMI-H, re-
spectively). Each read set has 100 million reads. We generate
a database based on microbial genomes drawn from NCBI’s
databases [82, 185] including 155,442 genomes for 52,961 mi-
crobial species. For database generation, we use default pa-
rameters for each tool. For Kraken2 [49], this results in a
293 GB database. For Metalign [82], this results in a 701 GB
k-mer database and a 6.9 GB sketch tree. MegIS uses the same
701 GB k-mer database and a 14 GB sketch database for MegIS’s
KSS sketch database (§4.3.2).

6. Evaluation

6.1. Presence/Absence Identification Analysis

We use 1-TB host DRAM in this analysis (smaller than all
datasets we evaluate). We examine seven metagenomic anal-
ysis configurations: 1) P-Opt, 2) A-Opt, 3) A-Opt+KSS, where
A-Opt leverages the software implementation of MegIS’s KSS
approach (§4.3.2) instead of Metalign’s CMash [82] for retriev-
ing taxIDs, 4) Ext-MS: a MegIS implementation without ISP,
where the same accelerators used in MegIS are outside the
SSD, 5) MS-NOL: a MegIS implementation without overlapping
the host and SSD operations as enabled by MegIS’s bucketing
(§4.2), 6) MS-CC: a MegIS configuration where the SSD cores
perform MegIS’s ISP tasks, and 7) MS: a MegIS configuration
where the hardware accelerators on the SSD controller perform
the ISP tasks.

Fig. 12 shows the speedup of the seven configurations over
P-Opt, on three read sets and with SSD-C and SSD-P. We make
six key observations. First, MegIS’s full implementation (MS)
achieves significant speedup compared to both performance-
optimized (P-Opt) and accuracy-optimized (A-Opt) baselines.

0

2

4

6

CAMI-L CAMI-M CAMI-H GMean

Sp
ee
du
p

CAMI-L CAMI-M CAMI-H GMean

A-Opt+KSSP-Opt A-Opt Ext-MS MS-NOL MS-CC MS

SSD-C SSD-P

Figure 12: Speedup for different SSDs and input sets.

With SSD-C (SSD-P), MS is 5.3–6.4× (2.7–6.5×) faster com-
pared to P-Opt, and 12.4–18.2× (6.9–20.4×) faster compared
to A-Opt. Second, A-Opt+KSS, which leverages MegIS’s taxID
retrieval approach (KSS) instead of A-Opt’s baseline taxID re-
trieval approach, improves A-Opt’s performance by 1.4× (4.2×)
on average on SSD-C (SSD-P). MegIS’s full implementation out-
performs A-Opt+KSS by 10.5× (2.9×). This shows that while
MegIS’s KSS approach, even outside the SSD, provides large
benefits, MegIS’s full implementation provides significant addi-
tional benefits by alleviating I/O overhead. Third, with SSD-C
(SSD-P), MS leads to 23.5% (34.9%) greater average speedup
compared to MegIS’s implementation without overlapping
the steps (MS-NOL). This is due to MegIS’s bucketing scheme
that enables overlapping the steps. Fourth, MS leads to 10.2×
(2.2×) average speedup on SSD-C (SSD-P) compared to MegIS’s
implementation outside the SSD (Ext-MS) due to the benefits
of MegIS’s specialized ISP. Fifth, while MS-CC provides large
speedup, MS leads to 9% (43%) greater average speedup com-
pared to MS-CC on SSD-C (SSD-P). While both MegIS configu-
rations provide large speedup, this shows that the hardware
accelerators are useful and their benefits improve as the inter-
nal bandwidth grows. Sixth, MegIS’s speedup improves as the
genetic diversity of the input read sets increases (from CAMI-L
to CAMI-H). This is due to the presence of more species in
more diverse read sets, which results in a greater number of
sketch tree lookups in the baseline taxID retrieval approach.
In contrast, MegIS’s KSS efficiently retrieves all taxIDs in a
single pass through the sketch tables.
To further demonstrate the benefits of MegIS’s optimiza-

tions, Fig. 13 shows the time breakdowns with CAMI-L as
a representative input. First, KSS improves performance by
reducing the execution time of taxID retrieval (as seen by
A-Opt+KSS over A-Opt). Second, MegIS without overlapping
improves performance over A-Opt+KSS by leveraging ISP to
accelerate intersection finding and taxID retrieval (as seen by
MS-NOL over A-Opt+KSS). Third, adding overlapping inMegIS’s
full implementation improves performance by overlapping the
execution of sorting in the host system with intersection find-
ing in the SSD (as seen by MS over MS-NOL).

A-Opt+KSS

A-Opt
P-Opt

MS-NOL
MS

SS
D
-C

A-Opt+KSS
A-Opt

P-Opt

MS-NOL
MS

SS
D
-P

K-mer	Extraction
Sorting	+	K-mer	Exclusion	+	(Transfer)

Tax	ID	Retrieval
Intersection	Finding

1694

401

Time	[sec]

Time	[sec]

P-Opt

Figure 13: Time breakdown with different SSDs for CAMI-L.

11

Effect of Database Size. Fig. 14 shows the effect of database
size, using CAMI-M as a representative input. The largest
database size in each tool (marked by 3×) equals the size men-
tioned in §5. We observe that MegIS’s speedups increase as the
database size increases (up to 5.6×/3.7× speedup compared to
P-Opt on SSD-C/SSD-P as database size grows to 3×).

0
2
4
6

1× 2× 3×
0
1
2
3
4

1× 2× 3×

P-Opt A-Opt A-Opt+KSS MS-NOL MS

Sp
ee
du
p

Database	Size	Scale Database	Size	Scale

SSD-C SSD-P

Figure 14: Speedup with different database sizes.

Effect of the Number of SSDs. MegIS benefits from more
SSDs in two ways. First, mapping different databases to dif-
ferent SSDs allows for concurrent analyses, each benefiting
from MegIS, as already shown (see Fig. 12). Since MegIS’s
databases and queries are sorted, the database can be disjointly
split across SSDs. Fig. 15 demonstrates this case by show-
ing the speedup of different configurations over P-Opt. We
show that MegIS maintains its large speedup with many SSDs
(i.e., up to eight). As the external bandwidth increases for the
baselines (with the number of SSDs), internal bandwidth also
increases for MegIS. Particularly, speedup over P-Opt increases
until some point (two SSDs) because MegIS takes better advan-
tage of the scaling due to its more efficient streaming accesses.
Although there is a slight decrease in speedup when moving
from two to eight SSDs, the speedup is still high (6.9×/5.2×
over eight SSD-Cs/SSD-Ps). This decrease is because in MegIS,
due to the large internal bandwidth with 8 SSDs, the overall
throughput becomes dependent on the host’s sorting. There-
fore, in systems with many SSDs, MegIS can be integrated with
an accelerator for sorting (e.g., [203–205]) for further speedup.
We conclude that MegIS effectively leverages the increased
internal bandwidth with more SSDs. Due to this efficient use
of multiple SSDs (owing to MegIS’s sorted database that can be
disjointly partitioned), MegIS can efficiently scale up to very
large databases that are distributed across different SSDs.

0

5

10

1× 2× 4× 8× 1× 2× 4× 8×

SSD-C SSD-P

Count
Type

Sp
ee
du
p

P-Opt A-Opt A-Opt+KSS MS-NOL MS

Figure 15: Speedup with different number of SSDs.

Effect of Main Memory Capacity. Fig. 16 demonstrates
the effect of host DRAM capacity by showing the speedup of
all configurations over P-Opt with CAMI-M.11 To gain a fair
understanding of I/O overheads when DRAM is smaller than
the database, we reduce I/O overheads as much as possible in
software. We adopt an optimization [57] to load and process
P-Opt’s database into chunks that fit in DRAM.12 In this case,
random accesses to the database in each chunk do not repeat-
edly access the SSD. However, two overheads still remain: 1)
there is still the I/O cost of bringing all chunks from the SSD
to the host DRAM, and 2) for every database chunk, all of the
input sequences must be queried. We make three observa-

11In all cases, except for the 32GB configuration, all k-mer buckets extracted
from the read set (§4.2.1) fit in the host DRAM.

12Note A-Opt does not require this due to its streaming database accesses.

0
4
8
12

1TB 128GB 64GB 32GB
0
10
20
30

1TB 128GB 64GB 32GB

P-Opt A-Opt A-Opt+KSS MS-NOL MS

Sp
ee
du
p

DRAM	Capacity DRAM	Capacity

14
.7
×

38
.5
×

SSD-C SSD-P

Figure 16: Speedup with different main memory capacities.

tions. First, MegIS’s speedup increases compared to P-Opt with
smaller DRAM (e.g., up to 38.5× speedup with 32GB of host
DRAM). This is because P-Opt’s performance is hindered by
the host DRAM capacity, while MegIS does not rely on large
host DRAM. Second, A-Opt and A-Opt+KSS are not affected by
the small DRAM (except for the 32-GB configuration) due to
their streaming database accesses. But regardless of DRAM
size, they suffer from I/O overhead. Third, with the 32-GB
DRAM, which is smaller than the extracted query k-mers in
Step 1 (§4.2.1), MS’s speedup increases. This is because MegIS’s
bucketing (§4.2.1) avoids unnecessary page swaps between the
host DRAM and the SSD in this case. We conclude that MegIS
enables fast and accurate analysis, without relying on large
DRAM or large SSD-external bandwidth.
Effect of Internal Bandwidth. Fig. 17 shows the effect of
internal bandwidth (i.e., by varying the number of SSD chan-
nels) on MegIS with CAMI-M as a representative input. We
observe that MegIS’s speedup increases as the internal band-
width increases. On SSD-C (SSD-P), MegIS leads to 12.3–41.8x
(8.6–21.6x) speedup over A-Opt. The increased speedup is due to
the improved performance of MegIS’s ISP steps as the internal
bandwidth increases.

0
2
4
6
8
10
12
14
16

4 8 16
0
1
2
3
4
5
6
7

8 16 32
#Channels #Channels

Sp
ee
du
p SSD-C SSD-P

P-Opt A-Opt A-Opt+KSS MS-NOL MS

Figure 17: Speedup with varying SSD internal bandwidth.

Impact on System Cost Efficiency. MegIS increases sys-
tem cost-efficiency because (i) it analyzes large amounts of
data inside storage and removes a large part of the analysis
burden from other parts of the system, and (ii) it does not
rely on either high-bandwidth host-SSD interfaces or large
DRAM. Fig. 18 compares MegIS on a cost-optimized system
with SSD-C and 64-GB host DRAM (MS_C) to baselines 1) on the
same system (P-Opt_C and A-Opt_C) and 2) on a performance-
optimized system with SSD-P and 1-TB host DRAM (P-Opt_P
and A-Opt_P).13 We make two key observations. First, MegIS
on the cost-optimized system outperforms the baselines even
when they run on the performance-optimized system. MS_C
provides 2.4× and 7.2× average speedup compared to P-Opt_P
and A-Opt_P, respectively. Note that MS_C provides the same
accuracy as A-Opt_P and significantly higher accuracy than
P-Opt_P. Second, baselines on the cost-optimized system expe-

13For the performance-optimized system, we calculate the cost of 1TB
DRAM to be roughly 7080 USD (8× 128GB modules [230]) and the cost of
SSD-P to be roughly 875 USD. For the performance-optimized system, we cal-
culate the cost of 64GB DRAM to be roughly 312 USD (8× 8GB modules [231],
assuming the same number of memory channels as the performance-optimized
system) and the cost of SSD-C to be roughly 346 USD. Note that the cost of
the total storage system depends not only on the price of each SSD but also on
the available interconnection slots in the systems, as systems typically have
fewer PCIe slots (needed for SSD-P) than SATA slots (needed for SSD-C).

12

0
0.5
1

1.5
2

2.5
3

3.5

CAMI-L CAMI-M CAMI-H GMean

P-Opt_P A-Opt_P P-Opt_C A-Opt_C MS_C
Sp
ee
du
p

Figure 18: Speedup of MegIS on a cost-optimized system over
baselines on cost-/performance-optimized systems.

rience significantly worse performance compared to when they
run on the performance-optimized system. P-Opt_C leads to
6.8× (7.7×) average (maximum) slowdown over P-Opt_P, and
A-Opt_C leads to 2.8× (4.2×) average (maximum) slowdown
over A-Opt_P. We conclude that MegIS improves system cost-
efficiency, while providing high performance and accuracy.
This is critical to both increasing the system cost-efficiency and
enabling portable analysis, which is increasingly important due
to the advances of compact portable sequencers [183, 232, 233]
for on-site metagenomics [19, 26, 178, 184].
Comparison to a PIM Accelerator. Fig. 19 compares MegIS
to a PIM-accelerated baseline. We evaluate Kraken2’s end-to-
end performance (i.e., including the I/O accesses to load data to
the PIM accelerator, k-mer matching, sample classification, and
other computation [49]), performing k-mermatching on a state-
of-the-art PIM system, Sieve [64].14 MegIS achieves 4.8-5.1×
(1.5-2.7×) speedup on SSD-C (SSD-P) over the PIM-accelerated
baseline while providing significantly higher accuracy (4.8×
higher F1 scores and 13% lower L1 norm error).15

0
2
4
6

CAMI-L CAMI-M CAMI-H
0
1
2
3

CAMI-L CAMI-M CAMI-H

Sp
ee
du
p Base MSSSD-C SSD-P

Figure 19: Speedup over a PIM-accelerated baseline [64].

6.2. Abundance Estimation Analysis
We evaluate abundance estimation with four configurations:

1) P-Opt, 2) A-Opt, 3) MS-NIdx: a MegIS implementation that
does not leverage MegIS’s third step for generating a uni-
fied reference index (§4.2), and instead uses Minimap2 [5]
for index generation, and 4) MS: MegIS’s full implementation.
Fig. 20 shows speedups over P-Opt. We make two key obser-
vations. First, MegIS’s full implementation leads to signifi-
cant speedup compared to both performance- and accuracy-
optimized baselines. MS provides 5.1–5.5× (2.5–3.7×) speedup
on SSD-C (SSD-P) compared to P-Opt, and 12.0–15.3× (6.5–
20.8×) speedup compared to P-Opt. Second, MegIS’s full im-
plementation achieves 65% higher average speedup compared
to MS-NIdx due to MegIS’s efficient index generation.

0
2
4
6

CAMI-L CAMI-M CAMI-H GMean CAMI-L CAMI-M CAMI-H GMean

P-Opt A-Opt MS-NIdx MS

Sp
ee
du
p SSD-C SSD-P

Figure 20: Speedup for abundance estimation.

14We do not use PIM for Metalign’s k-mer matching as k-mer matching in
Metalign is bottlenecked only by I/O bandwidth, not main memory, due to its
streaming accesses.

15A larger database for Kraken2 to encode richer information can increase
accuracy for the PIM-accelerated baseline, but with even larger I/O overhead.

6.3. Multi-Sample Use Case
Fig. 21 shows speedup for themulti-sample use case inwhich

multiple samples need to access the same database (§4.7). We
consider 256-GB host DRAM in which we can buffer k-mers
from 1–16 samples. We show the performance ofMegIS’s multi-
sample pipelined optimization (as described in §4.7) in software
(MS-SW) and in the full MegIS design (MS). In all configurations
that require sorting (all except P-Opt), we use a state-of-the-art
sorting accelerator [204].16 First, MS achieves large speedups of
up to 37.2×/100.2× over P-Opt/A-Opt. Second, MS-SW leads to
up to 20.5× (52.0×) speedup over A-Opt on SSD-C (SSD-P), and
the speedup grows with the number of samples. We conclude
that MegIS’s pipeline optimization for the multi-sample use
case in both software and hardware leads to large speedups
over the baseline tools, and the hardware configuration leads
to larger speedups compared to the software configuration by
additionally leveraging ISP.

0

5

10

15

1 4 8 16
0

10

20

30

1 4 8 16

Sp
ee
du
p

#	Samples	(each	100M	reads) #	Samples	(each	100M	reads)

17
.6
×

16
.4
×

37
.2
×

P-Opt A-Opt A-Opt+KSS MS-Pipe MS

SSD-C SSD-P

Figure 21: Speedup for multi-sample analysis.

6.4. Area and Power
Table 2 shows the area and power consumption of MegIS’s

hardware accelerator units at 300MHz. While these units could
be designed to operate at a higher frequency, their throughput
is already sufficient since MegIS is bottlenecked by NAND
flash read throughput. MegIS’s hardware accelerator area and
power requirements are small: only 0.04 mm2 and 7.658 mW
at 65 nm. The accelerator can be place-and-routed in a small
space with 0.25mm × 0.25mm dimensions (0.0625 mm2). The
area overhead of the accelerator is 0.011 mm2 at 32 nm,17
which is 1.7% of the three 28-nm ARM Cortex R4 cores [86] in
a SATA SSD controller [87]. While both the accelerator and
the cores in the SSD controller can execute MegIS’s ISP tasks,
the accelerator is 26.85× more power-efficient than the cores.

Table 2: Area and power consumption of MegIS’s logic.

Logic unit # of instances Area [mm2] Power [mW]

Intersect (120-bit) 1 per channel 0.001361 0.284
k-mer Registers (2× 120-bit) 1 per channel 0.002821 0.645
Index Generator (64-bit) 1 per channel 0.000272 0.025

Control Unit 1 per SSD 0.000188 0.026
Total for an 8-channel SSD - 0.04 7.658

6.5. Energy
We demonstrate the energy consumption of different

metagenomic analysis tools by obtaining the energy of the
host processor, the host DRAM, the accelerators, the SSD’s in-
ternal DRAM, host/SSD communications, and the SSD accesses.
For each tool, we calculate the energy consumption of each
part of the system based on its active/idle power and execution
time. We observe that MegIS provides significant energy bene-
fits over other software and hardware baselines by alleviating

16 We use the sorting throughput reported by the original paper [204] and
model the data movement time between the sorting accelerator and other
stages of MegIS’s pipeline.

17We scale area to lower technology nodes using the methodology in [234].

13

I/O overhead and reducing the burden of metagenomic analy-
sis in the system (the host processor and DRAM). Across our
evaluated SSDs and datasets, MegIS leads to 5.4× (9.8×), 15.2×
(25.7×), and 1.9× (3.5×) average (maximum) energy reduction
compared to P-Opt, A-Opt, and the PIM-accelerated P-Opt when
finding species present in the sample. By eliminating the need
to move the large databases outside the SSD, MegIS leads to
I/O data movement reduction of 71.7× over A-Opt and 30.1×
over P-Opt and the PIM-accelerated P-Opt.
7. Related Work
To our knowledge, MegIS is the first in-storage process-

ing (ISP) system designed to significantly reduce the data
movement overhead of the end-to-end metagenomic analy-
sis pipeline. By addressing the challenges of leveraging ISP for
metagenomics, MegIS fundamentally alleviates its data move-
ment overhead from the storage system via its efficient and
cooperative pipeline between the host and the SSD.
Software Optimization of Metagenomics. Several tools
(e.g., [51,57,73,76–78,82,90]) use comprehensive databases for
high accuracy, but usually incur significant computational and
I/O costs. Some tools (e.g., [48–53]) apply sampling to reduce
database size, but at the cost of accuracy loss.
Hardware Acceleration of Metagenomics. Several works
use GPUs (e.g., [62,63,66,70,235–237]), FPGAs (e.g., [238–240]),
and PIM (e.g., [61, 64, 65, 67, 68, 197]) to accelerate metage-
nomics by alleviating its computation or main memory over-
heads. These works do not reduce I/O overheads, whose impact
on end-to-end performance becomes even larger when other
bottlenecks are alleviated. Some works [241, 242] accelerate
metagenomic analysis that use raw genomic signals in tar-
geted sequencing [177, 179, 180, 243]. Targeted sequencing is
not a focus of our work since this application looks for specific
known targets in a sample, while we focus on cases where the
contents of the sample are not known in advance and require
looking up significantly larger databases.
Genome Sequence Analysis. Many works optimize differ-
ent parts of the genome analysis pipeline [26, 178]. Several
works (e.g., [4, 6–8, 213, 244–275]) accelerate read mapping,
a commonly-used operation in genomics. As shown in §6.2,
MegIS can be seamlessly integrated with different mappers.
Some works (e.g., [238, 266, 276, 277]) optimize key primitives
such as seeding. While these techniques have the potential
to provide several benefits, their adoption in metagenomics
requires efficiently dealing with significantly larger and more
complex indexes than the ones used in traditional genomics.
Therefore, we hope that optimizations introduced in our work
can facilitate the future adoption of these seeding techniques
in large-scale metagenomics.
In-Storage Processing. Several works propose ISP as acceler-
ators for different applications [106, 107, 111, 112, 114, 122–142]
(e.g., in machine learning [106, 111, 112, 140, 278], pattern pro-
cessing and read mapping [110,142], k-mer counting [279], and
graph analytics [134]). Several works propose ISP in the form of
general-purpose processing, inside the storage device [105,138,
139, 143–154], bulk-bitwise operations using flash [155, 156],
SSDs closely integrated with FPGAs [109, 157–161], or with
GPUs [162]. None of these works target the end-to-endmetage-
nomic analysis. MegIS has two key differences from prior ISP
approaches for genomics (e.g., pattern processing [142], read
mapping [110], k-mer counting [279]). First, MegIS is a coop-

erative ISP system for end-to-end metagenomic analysis that
orchestrates processing both inside and outside the storage
system, while other approaches focus on a specific task inside
the storage system (e.g., pattern matching, read mapping filters,
k-mer counting). Second, while a part of MegIS’s pipeline (Part
1 of Step 2) performs the same functionality (i.e., sequence
matching) as prior works, MegIS introduces new optimizations
due to its unique requirements for cooperative ISP between
the SSD and the host. As shown in §4.3.1, these requirements
stress the SSD’s limited internal DRAM bandwidth as MegIS
must 1) handle data from both the host and SSD channels, and
2) share intermediate data across ISP stages efficiently.
8. Conclusion

We introduce MegIS, the first in-storage processing system
designed to significantly reduce the data movement overhead
of end-to-end metagenomic analysis. To enable efficient in-
storage processing for metagenomics, we propose new 1) task
partitioning, 2) data/computation flow coordination, 3) storage-
aware algorithms, 4) data mapping, and 5) lightweight in-
storage accelerators. We demonstrate that MegIS greatly im-
proves performance, energy consumption, and system cost
efficiency at low area and power costs.
Acknowledgments

We thank the anonymous reviewers of MICRO 2023, HPCA
2024, and ISCA 2024 for feedback. We thank the SAFARI group
members for feedback and the stimulating intellectual envi-
ronment. We acknowledge the generous gifts and support
provided by our industrial partners, including Google, Huawei,
Intel, Microsoft, and VMware. This research was partially sup-
ported by European Union’s Horizon Programme for research
and innovation under Grant Agreement No. 101047160 (project
BioPIM), the Swiss National Science Foundation (SNSF), Semi-
conductor Research Corporation (SRC), the ETH Future Com-
puting Laboratory (EFCL), and the AI Chip Center for Emerg-
ing Smart Systems Limited (ACCESS).
References
[1] S. Dusko Ehrlich. MetaHIT: The European Union Project on Metagenomics of the

Human Intestinal Tract. Metagenomics of the Human Body, 2011.
[2] Shinichi Sunagawa, Luis Pedro Coelho, Samuel Chaffron, Jens Roat Kultima, Karine

Labadie, Guillem Salazar, Bardya Djahanschiri, Georg Zeller, Daniel R. Mende,
Adriana Alberti, Francisco M. Cornejo-Castillo, Paul I. Costea, Corinne Cruaud,
Francesco d’Ovidio, Stefan Engelen, Isabel Ferrera, Josep M. Gasol, Lionel Guidi,
Falk Hildebrand, Florian Kokoszka, Cyrille Lepoivre, Gipsi Lima-Mendez, Julie
Poulain, Bonnie T. Poulos, Marta Royo-Llonch, Hugo Sarmento, Sara Vieira-Silva,
Céline Dimier, Marc Picheral, Sarah Searson, Stefanie Kandels-Lewis, Tara Oceans
coordinators, Chris Bowler, Colomban de Vargas, Gabriel Gorsky, Nigel Grim-
sley, Pascal Hingamp, Daniele Iudicone, Olivier Jaillon, Fabrice Not, Hiroyuki
Ogata, Stephane Pesant, Sabrina Speich, Lars Stemmann, Matthew B. Sullivan, Jean
Weissenbach, Patrick Wincker, Eric Karsenti, Jeroen Raes, Silvia G. Acinas, Peer
Bork, Emmanuel Boss, Chris Bowler, Michael Follows, Lee Karp-Boss, Uros Krzic,
Emmanuel G. Reynaud, Christian Sardet, Mike Sieracki, and Didier Velayoudon.
Structure and Function of the Global Ocean Microbiome. Science, 2015.

[3] Noah Fierer. Embracing the unknown: disentangling the complexities of the soil
microbiome. Nature Reviews Microbiology, 2017.

[4] Damla Senol Cali, Gurpreet S. Kalsi, Zülal Bingöl, Can Firtina, Lavanya Subrama-
nian, Jeremie S. Kim, Rachata Ausavarungnirun, Mohammed Alser, Juan Gomez-
Luna, Amirali Boroumand, Anant Norion, Allison Scibisz, Sreenivas Subramoneyon,
Can Alkan, Saugata Ghose, and Onur Mutlu. GenASM: A High-Performance,
Low-Power Approximate String Matching Acceleration Framework for Genome
Sequence Analysis. In MICRO, 2020.

[5] Heng Li. Minimap2: Pairwise Alignment for Nucleotide Sequences. Bioinformatics,
2018.

[6] Tae Jun Ham, David Bruns-Smith, Brendan Sweeney, Yejin Lee, Seong Hoon Seo,
U Gyeong Song, Young H Oh, Krste Asanovic, Jae W Lee, and Lisa Wu Wills.
Genesis: A Hardware Acceleration Framework for Genomic Data Analysis. In
ISCA, 2020.

[7] Yatish Turakhia, Gill Bejerano, and William J Dally. Darwin: A Genomics Co-
processor Provides up to 15,000 x Acceleration on Long Read Assembly. In ASPLOS,
2018.

14

[8] Saransh Gupta, Mohsen Imani, Behnam Khaleghi, Venkatesh Kumar, and Tajana
Rosing. RAPID: A ReRAM Processing In-memory Architecture for DNA Sequence
Alignment. In ISLPED, 2019.

[9] Thomas M. Kuntz and Jack A. Gilbert. Introducing the microbiome into precision
medicine. Trends in Pharmacological Sciences, 2017.

[10] Matthew Dixon, Maria Stefil, Michael McDonald, Truls Erik Bjerklund-Johansen,
Kurt Naber, Florian Wagenlehner, and Vladimir Mouraviev. Metagenomics in
diagnosis and improved targeted treatment of UTI. World Journal of Urology, 2020.

[11] Arne M. Taxt, Ekaterina Avershina, Stephan A. Frye, Umaer Naseer, and Rafi
Ahmad. Rapid identification of pathogens, antibiotic resistance genes and plasmids
in blood cultures by nanopore sequencing. Scientific Reports, 2020.

[12] Ebrahim Afshinnekoo, Cem Meydan, Shanin Chowdhury, Dyala Jaroudi, Collin
Boyer, Nick Bernstein, Julia M. Maritz, Darryl Reeves, Jorge Gandara, Sagar
Chhangawala, Sofia Ahsanuddin, Amber Simmons, Timothy Nessel, Bharathi
Sundaresh, Elizabeth Pereira, Ellen Jorgensen, Sergios-Orestis Kolokotronis, Nell
Kirchberger, Isaac Garcia, David Gandara, Sean Dhanraj, Tanzina Nawrin, Yo-
gesh Saletore, Noah Alexander, Priyanka Vijay, Elizabeth M. Hénaff, Paul Zumbo,
Michael Walsh, Gregory D. O’Mullan, Scott Tighe, Joel T. Dudley, Anya Dunaif,
Sean Ennis, Eoghan O’Halloran, Tiago R. Magalhaes, Braden Boone, Angela L. Jones,
Theodore R. Muth, Katie Schneider Paolantonio, Elizabeth Alter, Eric E. Schadt,
Jeanne Garbarino, Robert J. Prill, Jane M. Carlton, Shawn Levy, and Christopher E.
Mason. Geospatial Resolution of Human and Bacterial Diversity with City-scale
Metagenomics. Cell Systems, 2015.

[13] Tiffany Hsu, Regina Joice, Jose Vallarino, Galeb Abu-Ali, Erica M. Hartmann,
Afrah Shafquat, Casey DuLong, Catherine Baranowski, Dirk Gevers, Jessica L.
Green, Xochitl C. Morgan, John D. Spengler, and Curtis Huttenhower. Urban
Transit System Microbial Communities Differ by Surface Type and Interaction with
Humans and the Environment. Msystems, 2016.

[14] Goldin John, Nikhil Shri Sahajpal, Ashis K. Mondal, Sudha Ananth, Colin Williams,
Alka Chaubey, Amyn M. Rojiani, and Ravindra Kolhe. Next-Generation Sequencing
(NGS) in COVID-19: A Tool for SARS-CoV-2 Diagnosis, Monitoring New Strains and
Phylodynamic Modeling in Molecular Epidemiology. Current Issues in Molecular
Biology, 2021.

[15] Dorottya Nagy-Szakal, Mara Couto-Rodriguez, Heather L. Wells, Joseph E. Bar-
rows, Marilyne Debieu, Kristin Butcher, Siyuan Chen, Agnes Berki, Courteny
Hager, Robert J. Boorstein, Mariah K. Taylor, Colleen B. Jonsson, Christopher E.
Mason, and Niamh B. O’Hara. Targeted Hybridization Capture of SARS-CoV-2 and
Metagenomics Enables Genetic Variant Discovery and Nasal Microbiome Insights.
Microbiology Spectrum, 2021.

[16] David F. Nieuwenhuijse and Marion P. G. Koopmans. Metagenomic sequencing for
surveillance of food- and waterborne viral diseases. Frontiers in Microbiology, 2017.

[17] James Hadfield, Colin Megill, Sidney M Bell, John Huddleston, Barney Potter, Charl-
ton Callender, Pavel Sagulenko, Trevor Bedford, and Richard A Neher. Nextstrain:
Real-time Tracking of Pathogen Evolution. Bioinformatics, 2018.

[18] Bonnie Berger and Yun William Yu. Navigating bottlenecks and trade-offs in
genomic data analysis. Nature Reviews Genetics, 2023.

[19] Augusto Dulanto Chiang and John P Dekker. From the Pipeline to the Bedside:
Advances and Challenges in Clinical Metagenomics. The Journal of Infectious
Diseases, 2019.

[20] Charles Y. Chiu and Steven A. Miller. Clinical metagenomics. Nature Reviews
Genetics, 2019.

[21] Nicholas A. Bokulich, Michal Ziemski, Michael S. Robeson, and Benjamin D. Kaehler.
Measuring the microbiome: Best practices for developing and benchmarking mi-
crobiomics methods. Computational and Structural Biotechnology Journal, 2020.

[22] Taishan Hu, Nilesh Chitnis, Dimitri Monos, and Anh Dinh. Next-Generation
Sequencing Technologies: An Overview. Human Immunology, 2021.

[23] Mohammed Alser, Zülal Bingöl, Damla Senol Cali, Jeremie Kim, Saugata Ghose,
Can Alkan, and Onur Mutlu. Accelerating Genome Analysis: A Primer on an
Ongoing Journey. IEEE Micro, 2020.

[24] Kenneth Katz, Oleg Shutov, Richard Lapoint, Michael Kimelman, J Rodney Bris-
ter, and Christopher O’Sullivan. The Sequence Read Archive: a decade more of
explosive growth. Nucleic Acids Research, 2021.

[25] European Bioinformatics Institute. European Nucleotide Archive Statistics. https:
//www.ebi.ac.uk/ena/browser/about/statistics, 2023.

[26] Mohammed Alser, Joel Lindegger, Can Firtina, Nour Almadhoun, Haiyu Mao,
Gagandeep Singh, Juan Gomez-Luna, and Onur Mutlu. From molecules to ge-
nomic variations: Accelerating genome analysis via intelligent algorithms and
architectures. Computational and Structural Biotechnology Journal, 2022.

[27] Rasko Leinonen, Hideaki Sugawara, Martin Shumway, and International Nucleotide
Sequence Database Collaboration. The Sequence Read Archive. Nucleic Acids
Research, 2010.

[28] Gagandeep Singh, Mohammed Alser, Kristof Denolf, Can Firtina, Alireza Kho-
damoradi, Meryem Banu Cavlak, Henk Corporaal, and Onur Mutlu. Rubicon: a
framework for designing efficient deep learning-based genomic basecallers. Genome
Biology, 2024.

[29] Zhimeng Xu, Yuting Mai, Denghui Liu, Wenjun He, Xinyuan Lin, Chi Xu, Lei
Zhang, Xin Meng, Joseph Mafofo, Walid Abbas Zaher, et al. Fast-bonito: A faster
deep learning based basecaller for nanopore sequencing. Artificial Intelligence in
the Life Sciences, 2021.

[30] Qian Lou, Sarath Chandra Janga, and Lei Jiang. Helix: Algorithm/architecture
co-design for accelerating nanopore genome base-calling. In PACT, 2020.

[31] Taha Shahroodi, Gagandeep Singh, Mahdi Zahedi, Haiyu Mao, Joel Lindegger, Can
Firtina, Stephan Wong, Onur Mutlu, and Said Hamdioui. Swordfish: A frame-
work for evaluating deep neural network-based basecalling using computation-in-
memory with non-ideal memristors. In MICRO, 2023.

[32] Hiruna Samarakoon, James M Ferguson, Hasindu Gamaarachchi, and Ira W Deve-
son. Accelerated nanopore basecalling with SLOW5 data format. Bioinformatics,
2023.

[33] Meryem Banu Cavlak, Gagandeep Singh, Mohammed Alser, Can Firtina, Joël
Lindegger, Mohammad Sadrosadati, Nika Mansouri Ghiasi, Can Alkan, and Onur

Mutlu. Targetcall: Eliminating the Wasted Computation in Basecalling via Pre-
Basecalling Filtering. APBC, 2023.

[34] Eric W Sayers, Evan E Bolton, J Rodney Brister, Kathi Canese, Jessica Chan, Don-
ald C Comeau, Catherine M Farrell, Michael Feldgarden, Anna M Fine, Kathryn
Funk, Eneida Hatcher, Sivakumar Kannan, Christopher Kelly, Sunghwan Kim,
William Klimke, Melissa J Landrum, Stacy Lathrop, Zhiyong Lu, Thomas L Madden,
Adriana Malheiro, Aron Marchler-Bauer, Terence D Murphy, Lon Phan, Shashikant
Pujar, Sanjida H Rangwala, Valerie A Schneider, Tony Tse, Jiyao Wang, Jian Ye,
Barton W Trawick, Kim D Pruitt, and Stephen T Sherry. Database resources of the
National Center for Biotechnology Information in 2023. Nucleic Acids Research,
2022.

[35] Mikhail Karasikov, HarunMustafa, Daniel Danciu, Marc Zimmermann, Christopher
Barber, Gunnar Ratsch, and André Kahles. Metagraph: Indexing and Analysing
Nucleotide Archives at Petabase-scale. bioRxiv, 2020.

[36] Sergey A Shiryev and Richa Agarwala. Indexing and searching petabyte-scale
nucleotide resources. bioRxiv, 2023.

[37] National Center for Biotechnology Information. Introducing pebblescout: Index and
search petabyte-scale sequence resources faster than ever. https://ncbiinsights.
ncbi.nlm.nih.gov/2023/09/14/introducing-pebblescout/, 2023.

[38] Téo Lemane, Nolan Lezzoche, Julien Lecubin, Eric Pelletier, Magali Lescot, Rayan
Chikhi, and Pierre Peterlongo. Indexing and real-time user-friendly queries in
terabyte-sized complex genomic datasets with kmindex and ora. Nature Computa-
tional Science, 2024.

[39] Camille Marchet and Antoine Limasset. Scalable sequence database search using
partitioned aggregated Bloom comb trees. Bioinformatics, 2023.

[40] National Center for Biotechnology Information. Re-evaluating the blast nu-
cleotide database (nt). https://ncbiinsights.ncbi.nlm.nih.gov/2022/11/
17/re-evaluating-blast-nucleotide-nt/, 2022.

[41] Michael Lynch. Evolution of the mutation rate. Trends in Genetics, 2010.
[42] Daniel J. Nasko, Sergey Koren, Adam M. Phillippy, and Todd J. Treangen. RefSeq

database growth influences the accuracy of k-mer-based lowest common ancestor
species identification. Genome Biology, 2018.

[43] Nuala A O’Leary, Mathew W Wright, J Rodney Brister, Stacy Ciufo, Diana Had-
dad, Rich McVeigh, Bhanu Rajput, Barbara Robbertse, Brian Smith-White, Danso
Ako-Adjei, et al. Reference Sequence (RefSeq) Database at NCBI: Current Status,
Taxonomic Expansion, and Functional Annotation. Nucleic Acids Research, 2016.

[44] Jian-Yu Jiao, Lan Liu, Zheng-ShuangHua, Bao-Zhu Fang, En-Min Zhou, Nimaichand
Salam, Brian P Hedlund, and Wen-Jun Li. Microbial dark matter coming to light:
challenges and opportunities. National Science Review, 2020.

[45] Wen-Jun Li, Bhagwan Narayan Rekadwad, Jian-Yu Jiao, and Nimaichand Salam.
Exploring microbial dark matter and the status of bacterial and archaeal taxonomy:
Challenges and opportunities in the future. In Modern Taxonomy of Bacteria and
Archaea: New Methods, Technology and Advances. 2024.

[46] Mikko Rautiainen, Sergey Nurk, Brian P. Walenz, Glennis A. Logsdon, David
Porubsky, Arang Rhie, Evan E. Eichler, Adam M. Phillippy, and Sergey Koren.
Telomere-to-telomere assembly of diploid chromosomes with Verkko. Nature
Biotechnology, 2023.

[47] Erich D. Jarvis, Giulio Formenti, Arang Rhie, Andrea Guarracino, Chentao Yang,
Jonathan Wood, Alan Tracey, Francoise Thibaud-Nissen, Mitchell R. Vollger, David
Porubsky, Haoyu Cheng, Mobin Asri, Glennis A. Logsdon, Paolo Carnevali, Mark
J. P. Chaisson, Chen-Shan Chin, Sarah Cody, Joanna Collins, Peter Ebert, Merly
Escalona, Olivier Fedrigo, Robert S. Fulton, Lucinda L. Fulton, Shilpa Garg, Jen-
nifer L. Gerton, Jay Ghurye, Anastasiya Granat, Richard E. Green, William Harvey,
Patrick Hasenfeld, Alex Hastie, Marina Haukness, Erich B. Jaeger, Miten Jain,
Melanie Kirsche, Mikhail Kolmogorov, Jan O. Korbel, Sergey Koren, Jonas Korlach,
Joyce Lee, Daofeng Li, Tina Lindsay, Julian Lucas, Feng Luo, Tobias Marschall,
Matthew W. Mitchell, Jennifer McDaniel, Fan Nie, Hugh E. Olsen, Nathan D. Olson,
Trevor Pesout, Tamara Potapova, Daniela Puiu, Allison Regier, Jue Ruan, Steven L.
Salzberg, Ashley D. Sanders, Michael C. Schatz, Anthony Schmitt, Valerie A. Schnei-
der, Siddarth Selvaraj, Kishwar Shafin, Alaina Shumate, Nathan O. Stitziel, Cather-
ine Stober, James Torrance, Justin Wagner, Jianxin Wang, Aaron Wenger, Chuanle
Xiao, Aleksey V. Zimin, Guojie Zhang, Ting Wang, Heng Li, Erik Garrison, David
Haussler, Ira Hall, Justin M. Zook, Evan E. Eichler, Adam M. Phillippy, Benedict
Paten, Kerstin Howe, Karen H. Miga, and Human Pangenome Reference Consor-
tium. Semi-automated assembly of high-quality diploid human reference genomes.
Nature, 2022.

[48] Daehwan Kim, Li Song, Florian P Breitwieser, and Steven L Salzberg. Centrifuge:
Rapid and Sensitive Classification of Metagenomic Sequences. Genome Research,
2016.

[49] Derrick E Wood, Jennifer Lu, and Ben Langmead. Improved Metagenomic Analysis
with Kraken 2. Genome Biology, 2019.

[50] André Müller, Christian Hundt, Andreas Hildebrandt, Thomas Hankeln, and Bertil
Schmidt. MetaCache: context-aware classification of metagenomic reads using
minhashing. Bioinformatics, 2017.

[51] Li Song and Ben Langmead. Centrifuger: lossless compression of microbial genomes
for efficient and accurate metagenomic sequence classification. Genome Biology,
2024.

[52] Alexander T. Dilthey, Chirag Jain, Sergey Koren, and Adam M. Phillippy. Strain-
level metagenomic assignment and compositional estimation for long reads with
metamaps. Nature Communications, 2019.

[53] Jeremy Fan, Steven Huang, and Samuel D. Chorlton. Bugseq: a highly accurate
cloud platform for long-read metagenomic analyses. BMC Bioinformatics, 2021.

[54] Alessio Milanese, Daniel R. Mende, Lucas Paoli, Guillem Salazar, Hans-Joachim
Ruscheweyh, Miguelangel Cuenca, Pascal Hingamp, Renato Alves, Paul I. Costea,
Luis Pedro Coelho, Thomas S. B. Schmidt, Alexandre Almeida, Alex L. Mitchell,
Robert D. Finn, Jaime Huerta-Cepas, Peer Bork, Georg Zeller, and Shinichi Suna-
gawa. Microbial abundance, activity and population genomic profiling with mO-
TUs2. Nature Communications, 2019.

[55] Steven L. Salzberg, Florian P. Breitwieser, Anupama Kumar, Haiping Hao, Peter
Burger, Fausto J. Rodriguez, Michael Lim, Alfredo Quiñones-Hinojosa, Gary L.

15

https://www.ebi.ac.uk/ena/browser/about/statistics
https://www.ebi.ac.uk/ena/browser/about/statistics
https://ncbiinsights.ncbi.nlm.nih.gov/2023/09/14/introducing-pebblescout/
https://ncbiinsights.ncbi.nlm.nih.gov/2023/09/14/introducing-pebblescout/
https://ncbiinsights.ncbi.nlm.nih.gov/2022/11/17/re-evaluating-blast-nucleotide-nt/
https://ncbiinsights.ncbi.nlm.nih.gov/2022/11/17/re-evaluating-blast-nucleotide-nt/

Gallia, Jeffrey A. Tornheim, Michael T. Melia, Cynthia L. Sears, and Carlos A.
Pardo. Next-generation sequencing in neuropathologic diagnosis of infections of
the nervous system. Neurology - Neuroimmunology Neuroinflammation, 2016.

[56] Abraham Gihawi, Yuchen Ge, Jennifer Lu, Daniela Puiu, Amanda Xu, Colin S.
Cooper, Daniel S. Brewer, Mihaela Pertea, and Steven L. Salzberg. Major data
analysis errors invalidate cancer microbiome findings. mBio, 2023.

[57] Christopher Pockrandt, Aleksey V. Zimin, and Steven L. Salzberg. Metagenomic
classification with KrakenUniq on low-memory computers. Journal of Open Source
Software, 2022.

[58] Joel Ackelsberg, Jennifer Rakeman, Scott Hughes, Jeannine Petersen, Paul Mead,
Martin Schriefer, Luke Kingry, Alex Hoffmaster, and Jay E. Gee. Lack of evidence
for plague or anthrax on the new york city subway. Cell Systems, 2015.

[59] Fernando Meyer, Adrian Fritz, Zhi-Luo Deng, David Koslicki, Till Robin Lesker,
Alexey Gurevich, Gary Robertson, Mohammed Alser, Dmitry Antipov, Francesco
Beghini, Denis Bertrand, Jaqueline J. Brito, C. Titus Brown, Jan Buchmann, Ay-
din Buluç, Bo Chen, Rayan Chikhi, Philip T. L. C. Clausen, Alexandru Cristian,
Piotr Wojciech Dabrowski, Aaron E. Darling, Rob Egan, Eleazar Eskin, Evangelos
Georganas, Eugene Goltsman, Melissa A. Gray, Lars Hestbjerg Hansen, Steven
Hofmeyr, Pingqin Huang, Luiz Irber, Huijue Jia, Tue Sparholt Jørgensen, Silas D.
Kieser, Terje Klemetsen, Axel Kola, Mikhail Kolmogorov, Anton Korobeynikov,
Jason Kwan, Nathan LaPierre, Claire Lemaitre, Chenhao Li, Antoine Limasset,
Fabio Malcher-Miranda, Serghei Mangul, Vanessa R. Marcelino, Camille Marchet,
Pierre Marijon, Dmitry Meleshko, Daniel R. Mende, Alessio Milanese, Niranjan Na-
garajan, Jakob Nissen, Sergey Nurk, Leonid Oliker, Lucas Paoli, Pierre Peterlongo,
Vitor C. Piro, Jacob S. Porter, Simon Rasmussen, Evan R. Rees, Knut Reinert, Bern-
hard Renard, Espen Mikal Robertsen, Gail L. Rosen, Hans-Joachim Ruscheweyh,
Varuni Sarwal, Nicola Segata, Enrico Seiler, Lizhen Shi, Fengzhu Sun, Shinichi
Sunagawa, Søren Johannes Sørensen, Ashleigh Thomas, Chengxuan Tong, Mirko
Trajkovski, Julien Tremblay, Gherman Uritskiy, Riccardo Vicedomini, Zhengyang
Wang, Ziye Wang, Zhong Wang, Andrew Warren, Nils Peder Willassen, Kather-
ine Yelick, Ronghui You, Georg Zeller, Zhengqiao Zhao, Shanfeng Zhu, Jie Zhu,
Ruben Garrido-Oter, Petra Gastmeier, Stephane Hacquard, Susanne Häußler, Ariane
Khaledi, Friederike Maechler, Fantin Mesny, Simona Radutoiu, Paul Schulze-Lefert,
Nathiana Smit, Till Strowig, Andreas Bremges, Alexander Sczyrba, and Alice Car-
olyn McHardy. Critical assessment of metagenome interpretation: the second
round of challenges. Nature Methods, 2022.

[60] Mohammed Alser, Jeremy Rotman, Dhrithi Deshpande, Kodi Taraszka, Huwenbo
Shi, Pelin Icer Baykal, Harry Taegyun Yang, Victor Xue, Sergey Knyazev, Ben-
jamin D. Singer, Brunilda Balliu, David Koslicki, Pavel Skums, Alex Zelikovsky,
Can Alkan, Onur Mutlu, and Serghei Mangul. Technology Dictates Algorithms:
Recent Developments in Read Alignment. Genome Biology, 2021.

[61] Zuher Jahshan, Itay Merlin, Esteban Garzón, and Leonid Yavits. Dash-cam: Dy-
namic approximate search content addressable memory for genome classification.
In MICRO, 2023.

[62] Robin Kobus, André Müller, Daniel Jünger, Christian Hundt, and Bertil Schmidt.
MetaCache-GPU: ultra-fast metagenomic classification. In ICPP, 2021.

[63] Xuebin Wang, Taifu Wang, Zhihao Xie, Youjin Zhang, Shiqiang Xia, Ruixue Sun,
Xinqiu He, Ruizhi Xiang, Qiwen Zheng, Zhencheng Liu, Jin’An Wang, Honglong
Wu, Xiangqian Jin, Weijun Chen, Dongfang Li, and Zengquan He. GPMeta: a
GPU-accelerated method for ultrarapid pathogen identification from metagenomic
sequences. Briefings in Bioinformatics, 2023.

[64] Lingxi Wu, Rasool Sharifi, Marzieh Lenjani, Kevin Skadron, and Ashish Venkat.
Sieve: Scalable in-situ DRAM-based accelerator designs for massively parallel k-mer
matching. In ISCA, 2021.

[65] Robert Hanhan, Esteban Garzón, Zuher Jahshan, Adam Teman, Marco Lanuzza,
and Leonid Yavits. EDAM: edit distance tolerant approximate matching content
addressable memory. In ISCA, 2022.

[66] Robin Kobus, Christian Hundt, André Müller, and Bertil Schmidt. Accelerating
Metagenomic Read Classification on CUDA-enabled GPUs. BMC Bioinformatics,
2017.

[67] Taha Shahroodi, Mahdi Zahedi, Abhairaj Singh, Stephan Wong, and Said Ham-
dioui. KrakenOnMem: a memristor-augmented HW/SW framework for taxonomic
profiling. In ICS, 2022.

[68] Taha Shahroodi, Mahdi Zahedi, Can Firtina, Mohammed Alser, Stephan Wong,
Onur Mutlu, and Said Hamdioui. Demeter: A fast and energy-efficient food profiler
using hyperdimensional computing in memory. IEEE Access, 2022.

[69] George Armstrong, Cameron Martino, Justin Morris, Behnam Khaleghi, Jaeyoung
Kang, Jeff DeReus, Qiyun Zhu, Daniel Roush, Daniel McDonald, Antonio Gonazlez,
et al. Swapping metagenomics preprocessing pipeline components offers speed
and sensitivity increases. Msystems, 2022.

[70] Peng Jia, Liming Xuan, Lei Liu, and Chaochun Wei. Metabing: Using gpus to
accelerate metagenomic sequence classification. PLOS ONE, 2011.

[71] Yu Cai, Saugata Ghose, Erich F Haratsch, Yixin Luo, and Onur Mutlu. Error
Characterization, Mitigation, and Recovery in Flash-Memory-Based Solid-state
Drives. IEEE, 2017.

[72] Yu Cai, Saugata Ghose, Erich F. Haratsch, Yixin Luo, and Onur Mutlu. Reliability Is-
sues in Flash-memory-based Solid-state Drives: Experimental Analysis, Mitigation,
Recovery. Inside Solid State Drives, 2018.

[73] Derrick E Wood and Steven L Salzberg. Kraken: ultrafast metagenomic sequence
classification using exact alignments. Genome Biology, 2014.

[74] Duy Tin Truong, Eric A Franzosa, Timothy L Tickle, Matthias Scholz, George
Weingart, Edoardo Pasolli, Adrian Tett, Curtis Huttenhower, and Nicola Segata.
MetaPhlAn2 for Enhanced Metagenomic Taxonomic Profiling. Nature Methods,
2015.

[75] Rachid Ounit, Steve Wanamaker, Timothy J Close, and Stefano Lonardi. CLARK:
Fast and Accurate Classification of Metagenomic and Genomic Sequences Using
Discriminative K-mers. BMC Genomics, 2015.

[76] Vitor C. Piro, Martin S. Lindner, and Bernhard Y. Renard. DUDes: a top-down
taxonomic profiler for metagenomics. Bioinformatics, 2016.

[77] Vitor C Piro, Temesgen H Dadi, Enrico Seiler, Knut Reinert, and Bernhard Y Renard.

ganon: precise metagenomics classification against large and up-to-date sets of
reference sequences. Bioinformatics, 2020.

[78] Vanessa R. Marcelino, Philip T. L. C. Clausen, Jan P. Buchmann, Michelle Wille,
Jonathan R. Iredell, Wieland Meyer, Ole Lund, Tania C. Sorrell, and Edward C.
Holmes. Ccmetagen: comprehensive and accurate identification of eukaryotes and
prokaryotes in metagenomic data. Genome Biology, 2020.

[79] Rakesh Nadig, Mohammad Sadrosadati, Haiyu Mao, Nika Mansouri Ghiasi, Arash
Tavakkol, Jisung Park, Hamid Sarbazi-Azad, Juan Gómez Luna, and Onur Mutlu.
Venice: Improving Solid-State Drive Parallelism at Low Cost via Conflict-Free
Accesses. In ISCA, 2023.

[80] Arash Tavakkol, Mohammad Sadrosadati, Saugata Ghose, Jeremie Kim, Yixin Luo,
Yaohua Wang, Nika Mansouri Ghiasi, Lois Orosa, Juan Gómez-Luna, and Onur
Mutlu. FLIN: Enabling Fairness and Enhancing Performance in Modern NVMe
Solid State Drives. In ISCA, 2018.

[81] Jiho Kim, Seokwon Kang, Yongjun Park, and John Kim. Networked SSD: Flash
Memory Interconnection Network for High-Bandwidth SSD. In MICRO, 2022.

[82] Nathan LaPierre, Mohammed Alser, Eleazar Eskin, David Koslicki, and Serghei Man-
gul. Metalign: Efficient Alignment-based Metagenomic Profiling Via Containment
Min Hash. Genome Biology, 2020.

[83] Wei Shen, Hongyan Xiang, Tianquan Huang, Hui Tang, Mingli Peng, Dachuan
Cai, Peng Hu, and Hong Ren. KMCP: accurate metagenomic profiling of both
prokaryotic and viral populations by pseudo-mapping. Bioinformatics, 2022.

[84] Samsung. Samsung SSD PM1735. https://www.samsung.com/semiconductor/
ssd/enterprise-ssd/MZPLJ3T2HBJR-00007/, 2020.

[85] Samsung. Samsung SSD 870 EVO. https://www.samsung.com/semiconductor/
minisite/ssd/product/consumer/870evo/, 2021.

[86] ARM Holdings. Cortex-R4. https://developer.arm.com/ip-products/
processors/cortex-r/cortex-r4, 2011.

[87] Samsung. Samsung SSD 860 PRO. https://www.samsung.com/semiconductor/
minisite/ssd/product/consumer/860pro/, 2018.

[88] Zheng Sun, Shi Huang, Meng Zhang, Qiyun Zhu, Niina Haiminen, Anna Paola
Carrieri, Yoshiki Vázquez-Baeza, Laxmi Parida, Ho-Cheol Kim, Rob Knight, and
Yang-Yu Liu. Challenges in benchmarking metagenomic profilers. Nature Methods,
2021.

[89] Jennifer Lu, Florian P Breitwieser, Peter Thielen, and Steven L Salzberg. Bracken:
Estimating Species Abundance in Metagenomics Data. PeerJ Computer Science,
2017.

[90] David Koslicki and Daniel Falush. MetaPalette: a k-mer Painting Approach for
Metagenomic Taxonomic Profiling and Quantification of Novel Strain Variation.
mSystems, 2016.

[91] Evangelos A. Dimopoulos, Alberto Carmagnini, Irina M. Velsko, Christina Warin-
ner, Greger Larson, Laurent A. F. Frantz, and Evan K. Irving-Pease. Haystac: A
bayesian framework for robust and rapid species identification in high-throughput
sequencing data. PLOS Computational Biology, 2022.

[92] Yu Cai, Onur Mutlu, Erich F Haratsch, and Ken Mai. Program Interference in MLC
NAND Flash Memory: Characterization, Modeling, and Mitigation. In ICCD, 2013.

[93] Guiqiang Dong, Ningde Xie, and Tong Zhang. On the Use of Soft-Decision Error-
Correction Codes in NAND Flash Memory. TCAS, 2010.

[94] Kai Zhao, Wenzhe Zhao, Hongbin Sun, Xiaodong Zhang, Nanning Zheng, and Tong
Zhang. LDPC-in-SSD: Making Advanced Error Correction Codes Work Effectively
in Solid State Drives. In FAST, 2013.

[95] Raj Chandra Bose and Dwijendra K Ray-Chaudhuri. On a Class of Error Correcting
Binary Group Codes. Information and control, 1960.

[96] Jiadong Wang, Kasra Vakilinia, Tsung-Yi Chen, Thomas Courtade, Guiqiang Dong,
Tong Zhang, Hari Shankar, and Richard Wesel. Enhanced Precision through Multi-
ple Reads for LDPC Decoding in Flash Memories. JSAC, 2014.

[97] Yu Cai, Saugata Ghose, Yixin Luo, Ken Mai, Onur Mutlu, and Erich F. Haratsch.
Vulnerabilities in MLCNAND FlashMemory Programming: Experimental Analysis,
Exploits, and Mitigation Techniques. In HPCA, 2017.

[98] Yixin Luo, Saugata Ghose, Yu Cai, Erich F Haratsch, and Onur Mutlu. Improving
3D NAND Flash Memory Lifetime by Tolerating Early Retention Loss and Process
Variation. POMACS, 2018.

[99] Yixin Luo, Saugata Ghose, Yu Cai, Erich F. Haratsch, and Onur Mutlu. HeatWatch:
Improving 3D NAND Flash Memory Device Reliability by Exploiting Self-recovery
and Temperature Awareness. In HPCA, 2018.

[100] Yu Cai, Yixin Luo, Saugata Ghose, and Onur Mutlu. Read Disturb Errors in MLC
NAND Flash Memory: Characterization, Mitigation, and Recovery. In DSN, 2015.

[101] Yu Cai, Gulay Yalcin, Onur Mutlu, Erich F Haratsch, Adrian Crista, Osman S Unsal,
and Ken Mai. Error Analysis and Management for MLC NAND Flash Memory.
Intel Technology, 2013.

[102] Yu Cai, Gulay Yalcin, Onur Mutlu, Erich F Haratsch, Adrian Cristal, Osman S Unsal,
and Ken Mai. Flash Correct-and-refresh: Retention-aware Error Management for
Increased Flash Memory lifetime. In ICCD, 2012.

[103] Keonsoo Ha, Jaeyong Jeong, and Jihong Kim. An Integrated Approach for Managing
Read Disturbs in High-density NAND Flash Memory. TCAD, 2015.

[104] Yixin Luo, Yu Cai, Saugata Ghose, Jongmoo Choi, and Onur Mutlu. WARM: Im-
proving NAND Flash Memory Lifetime with Write-Hotness Aware Retention Man-
agement. In MSST, 2015.

[105] Chen Zou and Andrew A Chien. ASSASIN: Architecture Support for Stream
Computing to Accelerate Computational Storage. In MICRO, 2022.

[106] Siqi Li, Fengbin Tu, Liu Liu, Jilan Lin, Zheng Wang, Yangwook Kang, Yufei Ding,
and Yuan Xie. ECSSD: Hardware/Data Layout Co-Designed In-Storage-Computing
Architecture for Extreme Classification. In ISCA, 2023.

[107] Vikram Sharma Mailthody, Zaid Qureshi, Weixin Liang, Ziyan Feng, Simon Garcia
De Gonzalo, Youjie Li, Hubertus Franke, Jinjun Xiong, Jian Huang, and Wen-mei
Hwu. Deepstore: In-storage Acceleration for Intelligent Queries. In MICRO, 2019.

[108] Seongyoung Kang, Jiyoung An, Jinpyo Kim, and Sang-Woo Jun. MithriLog: Near-
storage accelerator for high-performance log analytics. In MICRO, 2021.

[109] Gunjae Koo, Kiran Kumar Matam, I Te, HV Krishna Giri Narra, Jing Li, Hung-Wei
Tseng, Steven Swanson, and Murali Annavaram. Summarizer: Trading Communi-

16

https://www.samsung.com/semiconductor/ssd/enterprise-ssd/MZPLJ3T2HBJR-00007/
https://www.samsung.com/semiconductor/ssd/enterprise-ssd/MZPLJ3T2HBJR-00007/
https://www.samsung.com/semiconductor/minisite/ssd/product/consumer/870evo/
https://www.samsung.com/semiconductor/minisite/ssd/product/consumer/870evo/
https://developer.arm.com/ip-products/processors/cortex-r/cortex-r4
https://developer.arm.com/ip-products/processors/cortex-r/cortex-r4
https://www.samsung.com/semiconductor/minisite/ssd/product/consumer/860pro/
https://www.samsung.com/semiconductor/minisite/ssd/product/consumer/860pro/

cation with Computing Near Storage. In MICRO, 2017.
[110] Nika Mansouri Ghiasi, Jisung Park, Harun Mustafa, Jeremie Kim, Ataberk Ol-

gun, Arvid Gollwitzer, Damla Senol Cali, Can Firtina, Haiyu Mao, Nour Almad-
houn Alserr, Rachata Ausavarungnirun, Nandita Vijaykumar, Mohammed Alser,
and Onur Mutlu. GenStore: A High-Performance in-Storage Processing System for
Genome Sequence Analysis. In ASPLOS, 2022.

[111] Yuyue Wang, Xiurui Pan, Yuda An, Jie Zhang, and Glenn Reinman. BeaconGNN:
Large-Scale GNNAcceleration with Out-of-Order Streaming In-Storage Computing.
In HPCA, 2024.

[112] Hongsun Jang, Jaeyong Song, Jaewon Jung, Jaeyoung Park, Youngsok Kim, and
Jinho Lee. Smart-Infinity: Fast Large Language Model Training using Near-Storage
Processing on a Real System. In HPCA, 2024.

[113] Junkyum Kim, Myeonggu Kang, Yunki Han, Yang-Gon Kim, and Lee-Sup Kim.
OptimStore: In-Storage Optimization of Large Scale DNNs with On-Die Processing.
In HPCA, 2023.

[114] Cangyuan Li, Ying Wang, Cheng Liu, Shengwen Liang, Huawei Li, and Xiaowei Li.
GLIST: Towards In-Storage Graph Learning. In ATC, 2021.

[115] AnandTech. New Enterprise SSD Controllers. https://www.anandtech.com/
show/16275/new-enterprise-ssd-controllers-from-silicon-motion-
phison-fadu.

[116] Jiho Kim, Myoungsoo Jung, and John Kim. Decoupled SSD: Rethinking SSD
Architecture through Network-based Flash Controllers. In ISCA, 2023.

[117] Arash Tavakkol, Mohammad Arjomand, and Hamid Sarbazi-Azad. Design for
scalability in enterprise SSDs. In PACT, 2014.

[118] Myungsuk Kim, Jisung Park, Genhee Cho, Yoona Kim, Lois Orosa, Onur Mutlu,
and Jihong Kim. Evanesco: Architectural Support for Efficient Data Sanitization in
Modern Flash-Based Storage Systems. In ASPLOS, 2020.

[119] Jisung Park, Jaeyong Jeong, Sungjin Lee, Youngsun Song, and Jihong Kim. Improv-
ing Performance and Lifetime of NAND Storage Systems Using Relaxed Program
Sequence. In DAC, 2016.

[120] Jisung Park, Youngdon Jung, Jonghoon Won, Minji Kang, Sungjin Lee, and Jihong
Kim. RansomeBlocker: a Low-Overhead Ransomware-Proof SSD. In DAC, 2019.

[121] Li-Pin Chang. On Efficient Wear Leveling for Large-scale Flash-memory Storage
Systems. In SAC, 2007.

[122] Shengwen Liang, Ying Wang, Youyou Lu, Zhe Yang, Huawei Li, and Xiaowei Li.
Cognitive SSD: A Deep Learning Engine for In-Storage Data Retrieval. In ATC,
2019.

[123] Minsub Kim and Sungjin Lee. Reducing tail latency of DNN-based recommender
systems using in-storage processing. In APSys, 2020.

[124] Minje Lim, Jeeyoon Jung, and Dongkun Shin. LSM-Tree Compaction Acceleration
Using In-Storage Processing. In ICCE-Asia, 2021.

[125] JianguoWang, Dongchul Park, Yang-Suk Kee, Yannis Papakonstantinou, and Steven
Swanson. SSD in-storage computing for list intersection. In DaMoN, 2016.

[126] Sung-Tae Lee and Jong-Ho Lee. Neuromorphic computing using NAND flash
memory architecturewith pulsewidthmodulation scheme. Frontiers in Neuroscience,
2020.

[127] Myeonggu Kang, Hyeonuk Kim, Hyein Shin, Jaehyeong Sim, Kyeonghan Kim, and
Lee-Sup Kim. S-FLASH: A NAND flash-based deep neural network accelerator
exploiting bit-level sparsity. TC, 2021.

[128] Runze Han, Yachen Xiang, Peng Huang, Yihao Shan, Xiaoyan Liu, and Jinfeng
Kang. Flash memory array for efficient implementation of deep neural networks.
Advanced Intelligent Systems, 2021.

[129] Shaodi Wang. MemCore: Computing-in-Flash Design for Deep Neural Network
Acceleration. In EDTM, 2022.

[130] Panni Wang, Feng Xu, Bo Wang, Bin Gao, Huaqiang Wu, He Qian, and Shimeng Yu.
Three-dimensional NAND flash for vector–matrix multiplication. In VLSI, 2018.

[131] Runze Han, Peng Huang, Yachen Xiang, Chen Liu, Zhen Dong, Zhiqiang Su, Yongbo
Liu, Lu Liu, Xiaoyan Liu, and Jinfeng Kang. A novel convolution computing
paradigm based on NOR flash array with high computing speed and energy effi-
ciency. TCAS-I, 2019.

[132] Won Ho Choi, Pi-Feng Chiu, Wen Ma, Gertjan Hemink, Tung Thanh Hoang, Martin
Lueker-Boden, and Zvonimir Bandic. An in-flash binary neural network accelerator
with SLC NAND flash array. In ISCAS, 2020.

[133] Shuyi Pei, Jing Yang, and Qing Yang. REGISTOR: A Platform for Unstructured Data
Processing inside SSD Storage. TOS, 2019.

[134] Sang-Woo Jun, Andy Wright, Sizhuo Zhang, Shuotao Xu, and Arvind. GraFBoost:
Using Accelerated Flash Storage for External Graph Analytics. In ISCA, 2018.

[135] Jaeyoung Do, Yang-Suk Kee, Jignesh M Patel, Chanik Park, Kwanghyun Park, and
David J DeWitt. Query Processing on Smart SSDs: Opportunities and Challenges.
In SIGMOD, 2013.

[136] Sudharsan Seshadri, Mark Gahagan, Sundaram Bhaskaran, Trevor Bunker, Arup
De, Yanqin Jin, Yang Liu, and Steven Swanson. Willow: A User-Programmable SSD.
In OSDI, 2014.

[137] Sungchan Kim, Hyunok Oh, Chanik Park, Sangyeun Cho, Sang-Won Lee, and
Bongki Moon. In-storage Processing of Database Scans and Joins. Information
Sciences, 2016.

[138] Erik Riedel, Christos Faloutsos, Garth A Gibson, and David Nagle. Active Disks for
Large-Scale Data Processing. Computer, 2001.

[139] Erik Riedel, Garth Gibson, and Christos Faloutsos. Active Storage for Large-Scale
Data Mining and Multimedia Applications. In VLDB, 1998.

[140] Yunjae Lee, Jinha Chung, and Minsoo Rhu. SmartSAGE: training large-scale graph
neural networks using in-storage processing architectures. In ISCA, 2022.

[141] Won Seob Jeong, Changmin Lee, Keunsoo Kim, Myung Kuk Yoon, Won Jeon,
Myoungsoo Jung, and Won Woo Ro. REACT: Scalable and High-performance
Regular Expression Pattern Matching Accelerator for In-storage Processing. TPDS,
2019.

[142] Sang-Woo Jun, Huy T. Nguyen, Vijay Gadepally, and Arvind. In-storage Embedded
Accelerator for Sparse Pattern Processing. In HPEC, 2016.

[143] Boncheol Gu, Andre S. Yoon, Duck-Ho Bae, Insoon Jo, Jinyoung Lee, Jonghyun
Yoon, Jeong-Uk Kang, Moonsang Kwon, Chanho Yoon, Sangyeun Cho, Jaeheon

Jeong, and Duckhyun Chang. Biscuit: A Framework for Near-data Processing of
Big Data Workloads. In ISCA, 2016.

[144] Yangwook Kang, Yang-suk Kee, Ethan L Miller, and Chanik Park. Enabling Cost-
effective Data Processing with Smart SSD. In MSST, 2013.

[145] Xiaohao Wang, Yifan Yuan, You Zhou, Chance C Coats, and Jian Huang. Project
Almanac: A Time-traveling Solid-state Drive. EuroSys, 2019.

[146] Anurag Acharya, Mustafa Uysal, and Joel Saltz. Active Disks: Programming Model,
Algorithms and Evaluation. In ASPLOS, 1998.

[147] Kimberly Keeton, David A Patterson, and Joseph M Hellerstein. A Case for Intelli-
gent Disks (IDISKs). SIGMOD Record, 1998.

[148] FarnoodMerrikh-Bayat, Xinjie Guo, Michael Klachko, Mirko Prezioso, Konstantin K
Likharev, and Dmitri B Strukov. High-performance mixed-signal neurocomputing
with nanoscale floating-gate memory cell arrays. TNNLS, 2017.

[149] Devesh Tiwari, Simona Boboila, Sudharshan Vazhkudai, Youngjae Kim, Xiaosong
Ma, Peter Desnoyers, and Yan Solihin. Active flash: Towards energy-efficient,
in-situ data analytics on extreme-scale machines. In FAST, 2013.

[150] Devesh Tiwari, Sudharshan S Vazhkudai, Youngjae Kim, Xiaosong Ma, Simona
Boboila, and Peter J Desnoyers. Reducing data movement costs using energy-
efficient, active computation on ssd. In HotPower, 2012.

[151] Simona Boboila, Youngjae Kim, Sudharshan S Vazhkudai, Peter Desnoyers, and
Galen M Shipman. Active flash: Out-of-core data analytics on flash storage. In
MSST, 2012.

[152] Duck-Ho Bae, Jin-Hyung Kim, Sang-Wook Kim, Hyunok Oh, and Chanik Park.
Intelligent SSD: a turbo for big data mining. In CIKM, 2013.

[153] Mahdi Torabzadehkashi, Siavash Rezaei, Vladimir Alves, and Nader Bagherzadeh.
Compstor: An in-storage computation platform for scalable distributed processing.
In IPDPSW, 2018.

[154] Luyi Kang, Yuqi Xue, Weiwei Jia, Xiaohao Wang, Jongryool Kim, Changhwan Youn,
Myeong Joon Kang, Hyung Jin Lim, Bruce Jacob, and Jian Huang. Iceclave: A
trusted execution environment for in-storage computing. In MICRO, 2021.

[155] Congming Gao, Xin Xin, Youyou Lu, Youtao Zhang, Jun Yang, and Jiwu Shu.
ParaBit: processing parallel bitwise operations in NAND flash memory based SSDs.
In MICRO, 2021.

[156] Jisung Park, Roknoddin Azizi, Geraldo F Oliveira, Mohammad Sadrosadati, Rakesh
Nadig, David Novo, Juan Gómez-Luna, Myungsuk Kim, and Onur Mutlu. Flash-
Cosmos: In-Flash Bulk Bitwise Operations Using Inherent Computation Capability
of NAND Flash Memory. In MICRO, 2022.

[157] Sang-Woo Jun, Ming Liu, Sungjin Lee, Jamey Hicks, John Ankcorn, Myron King,
Shuotao Xu, and Arvind. Bluedbm: An Appliance for Big Data Analytics. In ISCA,
2015.

[158] Sang-Woo Jun, Ming Liu, Sungjin Lee, Jamey Hicks, John Ankcorn, Myron King,
and Shuotao Xu. BlueDBM: Distributed Flash Storage for Big Data Analytics. TOCS,
2016.

[159] Mahdi Torabzadehkashi, Siavash Rezaei, Ali Heydarigorji, Hosein Bobarshad,
Vladimir Alves, and Nader Bagherzadeh. Catalina: In-storage Processing Ac-
celeration for Scalable Big Data Analytics. Euromicro PDP, 2019.

[160] Joo Hwan Lee, Hui Zhang, Veronica Lagrange, Praveen Krishnamoorthy, Xiaodong
Zhao, and Yang Seok Ki. SmartSSD: FPGA Accelerated Near-Storage Data Analytics
on SSD. IEEE Computer Architecture Letters, 2020.

[161] Mohammadamin Ajdari, Pyeongsu Park, Joonsung Kim, Dongup Kwon, and Jang-
woo Kim. CIDR: A Cost-effective In-line Data Reduction System for Terabit-per-
second Scale SSD Arrays. In HPCA, 2019.

[162] Benjamin Y Cho, Won Seob Jeong, Doohwan Oh, and Won Woo Ro. XSD: Acceler-
ating Mapreduce by Harnessing the GPU inside an SSD. In WoNDP, 2013.

[163] National Research Council et al. Why Metagenomics? In The New Science of
Metagenomics: Revealing the Secrets of our Microbial Planet. 2007.

[164] Centers for Disease Control and Prevention. Using the Latest Technology to Detect
Outbreaks and Protect the Public’s Health. https://www.cdc.gov/pulsenet/
next-gen-wgs.html, 2020.

[165] Diane L Downie, Preetika Rao, Corinne David-Ferdon, Sean Courtney, Justin Lee,
Claire Quiner, Pia MacDonald, Keegan Barnes, Shelby S Fisher, Joanne D Andreadis,
Jasmine Chaitram, Matthew R Mauldin, Reyolds M Salerno, Jarad Schiffer, and Adi
Gundlapalli. 1774. Surveillance for Emerging and Reemerging Pathogens Using
Pathogen Agnostic Metagenomic Sequencing in the United States: A Critical Role
for Federal Government Agencies. Open Forum Infectious Diseases, 2023.

[166] Centers for Disease Control and Prevention. AMD: Developing Faster Tests. https:
//www.cdc.gov/amd/what-we-do/faster-tests.html, 2019.

[167] Zachary D. Stephens, Skylar Y. Lee, Faraz Faghri, Roy H. Campbell, Chengxiang
Zhai, Miles J. Efron, Ravishankar Iyer, Michael C. Schatz, Saurabh Sinha, and Gene E.
Robinson. Big Data: Astronomical or Genomical? PLOS Biology, 2015.

[168] Erika Check Hayden. Genome researchers raise alarm over big data. Nature, 2015.
[169] Robert C. Edgar, Jeff Taylor, Victor Lin, Tomer Altman, Pierre Barbera, Dmitry

Meleshko, Dan Lohr, Gherman Novakovsky, Benjamin Buchfink, Basem Al-Shayeb,
Jillian F. Banfield, Marcos de la Peña, Anton Korobeynikov, Rayan Chikhi, and
ArtemBabaian. Petabase-scale sequence alignment catalyses viral discovery. Nature,
2022.

[170] Mantas Sereika, Rasmus Hansen Kirkegaard, Søren Michael Karst, Thomas Yssing
Michaelsen, Emil Aarre Sørensen, Rasmus Dam Wollenberg, and Mads Albertsen.
Oxford Nanopore R10.4 long-read sequencing enables the generation of near-
finished bacterial genomes from pure cultures andmetagenomes without short-read
or reference polishing. Nature Methods, 2022.

[171] Yunhao Wang, Yue Zhao, Audrey Bollas, Yuru Wang, and Kin Fai Au. Nanopore
Sequencing Technology, Bioinformatics and Applications. Nature Biotechnology,
2021.

[172] Leonard Schuele, Hayley Cassidy, Nilay Peker, John W. A. Rossen, and Natacha
Couto. Future potential of metagenomics in microbiology laboratories. Expert
Review of Molecular Diagnostics, 2021.

[173] Illumina. NovaSeq X Series Specifications. https://emea.illumina.com/
systems/sequencing-platforms/novaseq-x-plus/specifications.html,
2023.

17

https://www.anandtech.com/show/16275/new-enterprise-ssd-controllers-from-silicon-motion-phison-fadu
https://www.anandtech.com/show/16275/new-enterprise-ssd-controllers-from-silicon-motion-phison-fadu
https://www.anandtech.com/show/16275/new-enterprise-ssd-controllers-from-silicon-motion-phison-fadu
https://www.cdc.gov/pulsenet/next-gen-wgs.html
https://www.cdc.gov/pulsenet/next-gen-wgs.html
https://www.cdc.gov/amd/what-we-do/faster-tests.html
https://www.cdc.gov/amd/what-we-do/faster-tests.html
https://emea.illumina.com/systems/sequencing-platforms/novaseq-x-plus/specifications.html
https://emea.illumina.com/systems/sequencing-platforms/novaseq-x-plus/specifications.html

[174] Shadi Shokralla, Teresita M. Porter, Joel F. Gibson, Rafal Dobosz, Daniel H. Janzen,
Winnie Hallwachs, G. Brian Golding, and Mehrdad Hajibabaei. Massively parallel
multiplex DNA sequencing for specimen identification using an Illumina MiSeq
platform. Scientific Reports, 2015.

[175] Haowen Zhang, Haoran Li, Chirag Jain, Haoyu Cheng, Kin Fai Au, Heng Li, and
Srinivas Aluru. Real-time Mapping of Nanopore Raw Signals. Bioinformatics, 2021.

[176] Can Firtina, Nika Mansouri Ghiasi, Joel Lindegger, Gagandeep Singh, Meryem Banu
Cavlak, Haiyu Mao, and Onur Mutlu. RawHash: enabling fast and accurate real-
time analysis of raw nanopore signals for large genomes. Bioinformatics, 2023.

[177] Sam Kovaka, Yunfan Fan, Bohan Ni, Winston Timp, and Michael C Schatz. Tar-
geted Nanopore Sequencing by Real-time Mapping of Raw Electrical Signal with
UNCALLED. Nature Biotechnology, 2020.

[178] Onur Mutlu and Can Firtina. Accelerating Genome Analysis via Algorithm-
Architecture Co-Design. In DAC, 2023.

[179] Alexander Payne, Nadine Holmes, Thomas Clarke, Rory Munro, Bisrat J. Debebe,
and Matthew Loose. Readfish enables targeted nanopore sequencing of gigabase-
sized genomes. Nature Biotechnology, 2021.

[180] Yuwei Bao, Jack Wadden, John R. Erb-Downward, Piyush Ranjan, Weichen Zhou,
Torrin L. McDonald, Ryan E. Mills, Alan P. Boyle, Robert P. Dickson, David Blaauw,
and Joshua D. Welch. Squigglenet: real-time, direct classification of nanopore
signals. Genome Biology, 2021.

[181] Jens-Uwe Ulrich, Ahmad Lutfi, Kilian Rutzen, and Bernhard Y Renard. ReadBouncer:
precise and scalable adaptive sampling for nanopore sequencing. Bioinformatics,
2022.

[182] Illumina. NovaSeq 6000 System Specifications. https://emea.illumina.com/
systems/sequencing-platforms/novaseq/specifications.html, 2020.

[183] Miten Jain, Hugh E. Olsen, Benedict Paten, andMark Akeson. The Oxford Nanopore
MinION: delivery of nanopore sequencing to the genomics community. Genome
Biology, 2016.

[184] Aaron Pomerantz, Nicolás Peñafiel, Alejandro Arteaga, Lucas Bustamante, Frank
Pichardo, Luis A Coloma, César L Barrio-Amorós, David Salazar-Valenzuela, and
Stefan Prost. Real-time DNA Barcoding in a Rainforest Using Nanopore Sequencing:
Opportunities for Rapid Biodiversity Assessments and Local Capacity Building.
GigaScience, 2018.

[185] Eric W Sayers, Richa Agarwala, Evan E Bolton, J Rodney Brister, Kathi Canese,
Karen Clark, Ryan Connor, Nicolas Fiorini, Kathryn Funk, Timothy Hefferon,
J Bradley Holmes, Sunghwan Kim, Avi Kimchi, Paul A Kitts, Stacy Lathrop, Zhiyong
Lu, Thomas L Madden, Aron Marchler-Bauer, Lon Phan, Valerie A Schneider,
Conrad L Schoch, Kim D Pruitt, and James Ostell. Database resources of the
National Center for Biotechnology Information. Nucleic Acids Research, 2018.

[186] AMD. AMD® EPYC® 7742 CPU. https://www.amd.com/en/products/cpu/amd-
epyc-7742.

[187] Micron Technology Inc. 4Gb: x4, x8, x16 DDR4 SDRAM Data Sheet, 2016.
[188] Serial ATA International Organization. SATA revision 3.0 specifications. https:

//www.sata-io.org.
[189] PCI-SIG. PCI Express Base Specification Revision 4.0, Version 1.0. https://pcisig.

com/specifications.
[190] Samsung PM1735. https://www.digitec.ch/en/s1/product/samsung-

pm1735-3200-gb-pci-express-ssd-15678607.
[191] Samsung PM9A3. https://www.digitec.ch/en/s1/product/samsung-pm9a3-

3840-gb-m2-22110-ssd-16404342.
[192] Samsung 870 EVO. https://www.digitec.ch/en/s1/product/samsung-870-

evo-4000-gb-25-ssd-14599189.
[193] Daehwan Kim, Li Song, Florian P Breitwieser, and Steven L Salzberg. Centrifuge.

http://www.ccb.jhu.edu/software/centrifuge/, 2020.
[194] Téo Lemane, Paul Medvedev, Rayan Chikhi, and Pierre Peterlongo. kmtricks: effi-

cient and flexible construction of Bloom filters for large sequencing data collections.
Bioinformatics Advances, 2022.

[195] JarnoNAlanko, Jaakko Vuohtoniemi, TommiMäklin, and Simon J Puglisi. Themisto:
a scalable colored k-mer index for sensitive pseudoalignment against hundreds of
thousands of bacterial genomes. Bioinformatics, 2023.

[196] Jason Fan, Noor Pratap Singh, Jamshed Khan, Giulio Ermanno Pibiri, and Rob
Patro. Fulgor: A Fast and Compact k-mer Index for Large-Scale Matching and
Color Queries. In WABI, 2023.

[197] Zhuowen Zou, Hanning Chen, Prathyush Poduval, Yeseong Kim, Mahdi Imani,
Elaheh Sadredini, Rosario Cammarota, and Mohsen Imani. BioHD: an efficient
genome sequence search platform using hyperdimensional memorization. In ISCA,
2022.

[198] Onur Mutlu, Saugata Ghose, Juan Gómez-Luna, and Rachata Ausavarungnirun. A
Modern Primer on Processing in Memory. In Emerging Computing: From Devices
to Systems: Looking Beyond Moore and Von Neumann. 2022.

[199] Saugata Ghose, Amirali Boroumand, Jeremie S Kim, Juan Gómez-Luna, and Onur
Mutlu. Processing-in-Memory: A Workload-Driven Perspective. IBM Journal of
Research and Development, 2019.

[200] Onur Mutlu, Saugata Ghose, Juan Gómez-Luna, and Rachata Ausavarungnirun.
Processing Data Where It Makes Sense: Enabling In-Memory Computation. Micro-
processors and Microsystems, 2019.

[201] Saugata Ghose, Kevin Hsieh, Amirali Boroumand, Rachata Ausavarungnirun, and
Onur Mutlu. Enabling the Adoption of Processing-in-memory: Challenges, Mecha-
nisms, Future Research Directions. arXiv, 2018.

[202] Marek Kokot, Maciej Długosz, and Sebastian Deorowicz. KMC 3: counting and
manipulating k-mer statistics. Bioinformatics, 2017.

[203] Nikola Samardzic, Weikang Qiao, Vaibhav Aggarwal, Mau-Chung Frank Chang,
and Jason Cong. Bonsai: High-performance adaptive merge tree sorting. In ISCA,
2020.

[204] Weikang Qiao, Licheng Guo, Zhenman Fang, Mau-Chung Frank Chang, and Jason
Cong. TopSort: A High-Performance Two-Phase Sorting Accelerator Optimized on
HBM-based FPGAs. In FCCM, 2022.

[205] Soundarya Jayaraman, Bingyi Zhang, and Viktor Prasanna. Hypersort: High-
performance Parallel Sorting on HBM-enabled FPGA. In ICFPT, 2022.

[206] Gaëtan Benoit, Pierre Peterlongo, Mahendra Mariadassou, Erwan Drezen, Sophie
Schbath, Dominique Lavenier, and Claire Lemaitre. Multiple comparative metage-
nomics using multiset k-mer counting. PeerJ Computer Science, 2016.

[207] Roderick Bovee and Nick Greenfield. Finch: a tool adding dynamic abundance
filtering to genomic minhashing. The Journal of Open Source Software, 2018.

[208] Samsung. Samsung SSD 980 PRO. https://www.samsung.com/semiconductor/
minisite/ssd/product/consumer/980pro/, 2020.

[209] Shaopeng Liu and David Koslicki. CMash: fast, multi-resolution estimation of
k-mer-based Jaccard and containment indices. Bioinformatics, 2022.

[210] Camille Marchet, Christina Boucher, Simon J. Puglisi, Paul Medvedev, Mikaël
Salson, and Rayan Chikhi. Data structures based on k-mers for querying large
collections of sequencing data sets. Genome Research, 2021.

[211] Silvio Weging, Andreas Gogol-Döring, and Ivo Grosse. Taxonomic analysis of
metagenomic data with kASA. Nucleic Acids Research, 2021.

[212] Anirban Nag, CN Ramachandra, Rajeev Balasubramonian, Ryan Stutsman, Edouard
Giacomin, Hari Kambalasubramanyam, and Pierre-Emmanuel Gaillardon. Gen-
Cache: Leveraging In-cache Operators for Efficient Sequence Alignment. InMICRO,
2019.

[213] Daichi Fujiki, Arun Subramaniyan, Tianjun Zhang, Yu Zeng, Reetuparna Das, David
Blaauw, and Satish Narayanasamy. Genax: A Genome Sequencing Accelerator. In
ISCA, 2018.

[214] Myungsuk Kim, Jaehoon Lee, Sungjin Lee, Jisung Park, Youngsun Song, and Jihong
Kim. Improving Performance and Lifetime of Large-page NAND Storages Using
Erase-free Subpage Programming. In DAC, 2017.

[215] Atsuo Kawaguchi, Shingo Nishioka, and Hiroshi Motoda. A flash-memory based
file system. In ATC, 1995.

[216] Micron. Product Flyer: Micron 3D NAND Flash Memory. https:
//www.micron.com/-/media/client/global/documents/products/product-
flyer/3d_nand_flyer.pdf?la=en, 2016.

[217] David Danko, Daniela Bezdan, Evan E Afshin, Sofia Ahsanuddin, Chandrima
Bhattacharya, Daniel J Butler, Kern Rei Chng, Daisy Donnellan, Jochen Hecht,
Katelyn Jackson, et al. A Global Metagenomic Map of Urban Microbiomes and
Antimicrobial Resistance. Cell, 2021.

[218] Peter J. Turnbaugh, Ruth E. Ley, Micah Hamady, Claire M. Fraser-Liggett, Rob
Knight, and Jeffrey I. Gordon. The human microbiome project. Nature, 2007.

[219] Synopsys, Inc. Design Compiler. https://www.synopsys.com/implementation-
and-signoff/rtl-synthesis-test/design-compiler-graphical.html.

[220] United Microelectronics Corporation. UMK65LSCLLMVBBL_A - UMC 65 nm
Low-K 1.2V/1.0V Low Leakage LVT Tapless Standard Cell Library, version A02,
2008.

[221] Cadence Design Systems, Inc. Innovus Implementation System. https:
//www.cadence.com/en_US/home/tools/digital-design-and-signoff/soc-
implementation-and-floorplanning/innovus-implementation-
system.html.

[222] Yoongu Kim, Weikun Yang, and Onur Mutlu. Ramulator: A Fast and Extensible
DRAM Simulator. CAL, 2015.

[223] Yoongu Kim, Weikun Yang, and Onur Mutlu. Ramulator Source Code. https:
//github.com/CMU-SAFARI/ramulator.

[224] Arash Tavakkol, Juan Gómez-Luna, Mohammad Sadrosadati, Saugata Ghose, and
Onur Mutlu. MQSim: A Framework for Enabling Realistic Studies of Modern
Multi-queue SSD Devices. In FAST, 2018.

[225] Arash Tavakkol, Juan Gómez-Luna, Mohammad Sadrosadati, Saugata Ghose, and
Onur Mutlu. MQSim Source Code. https://github.com/CMU-SAFARI/MQSim.

[226] Samsung. LPDDR4. https://semiconductor.samsung.com/dram/lpddr/
lpddr4/.

[227] Saugata Ghose, Tianshi Li, Nastaran Hajinazar, Damla Senol Cali, and Onur Mutlu.
Demystifying Complex Workload-DRAM Interactions: An Experimental Study.
POMACS, 2019.

[228] Advanced Micro Devices. AMD® µProf. https://developer.amd.com/amd-
uprof/, 2021.

[229] Alexander Sczyrba, Peter Hofmann, Peter Belmann, David Koslicki, Stefan Janssen,
Johannes Dröge, Ivan Gregor, Stephan Majda, Jessika Fiedler, Eik Dahms, Andreas
Bremges, Adrian Fritz, Ruben Garrido-Oter, Tue Sparholt Jørgensen, Nicole Shapiro,
Philip D. Blood, Alexey Gurevich, Yang Bai, Dmitrij Turaev, Matthew Z. DeMaere,
Rayan Chikhi, Niranjan Nagarajan, Christopher Quince, Fernando Meyer, Monika
Balvočiūtė, Lars Hestbjerg Hansen, Søren J. Sørensen, Burton K. H. Chia, Bertrand
Denis, Jeff L. Froula, ZhongWang, Robert Egan, DongwanDon Kang, Jeffrey J. Cook,
Charles Deltel, Michael Beckstette, Claire Lemaitre, Pierre Peterlongo, Guillaume
Rizk, Dominique Lavenier, Yu-Wei Wu, Steven W. Singer, Chirag Jain, Marc Strous,
Heiner Klingenberg, Peter Meinicke, Michael D. Barton, Thomas Lingner, Hsin-
Hung Lin, Yu-Chieh Liao, Genivaldo Gueiros Z. Silva, Daniel A. Cuevas, Robert A.
Edwards, Surya Saha, Vitor C. Piro, Bernhard Y. Renard, Mihai Pop, Hans-Peter
Klenk, Markus Göker, Nikos C. Kyrpides, Tanja Woyke, Julia A. Vorholt, Paul
Schulze-Lefert, Edward M. Rubin, Aaron E. Darling, Thomas Rattei, and Alice C.
McHardy. Critical Assessment of Metagenome Interpretation—A Benchmark of
Metagenomics Software. Nature Methods, 2017.

[230] Samsung. Samsung 8 GB DRAM DDR4 8GB PC3200 UB 1Rx16 Samsung. https:
//semiconductor.samsung.com/dram/module/udimm/m378a1g44ab0-cwe/.

[231] Samsung. Samsung 128 GB DDR4 3200 LRDIMM ECC Registred. https://
semiconductor.samsung.com/dram/module/lrdimm/m386aag40am3-cwe/.

[232] Oxford Nanopore Technologies. MinION Mk1B IT Requirements.
https://community.nanoporetech.com/requirements_documents/minion-
it-reqs.pdf, 2021.

[233] Damla Senol Cali, Jeremie S Kim, Saugata Ghose, Can Alkan, and Onur Mutlu.
Nanopore Sequencing Technology and Tools for Genome Assembly: Computational
Analysis of the Current State, Bottlenecks and Future Directions. Briefings in
Bioinformatics, 2018.

[234] Aaron Stillmaker and Bevan Baas. Scaling Equations for the Accurate Prediction
of CMOS Device Performance from 180 Nm to 7 Nm. Integration, 2017.

[235] Xiaoquan Su, Jian Xu, and Kang Ning. Parallel-meta: efficient metagenomic data

18

https://emea.illumina.com/systems/sequencing-platforms/novaseq/specifications.html
https://emea.illumina.com/systems/sequencing-platforms/novaseq/specifications.html
https://www.amd.com/en/products/cpu/amd-epyc-7742
https://www.amd.com/en/products/cpu/amd-epyc-7742
https://www.sata-io.org
https://www.sata-io.org
https://pcisig.com/specifications
https://pcisig.com/specifications
https://www.digitec.ch/en/s1/product/samsung-pm1735-3200-gb-pci-express-ssd-15678607
https://www.digitec.ch/en/s1/product/samsung-pm1735-3200-gb-pci-express-ssd-15678607
https://www.digitec.ch/en/s1/product/samsung-pm9a3-3840-gb-m2-22110-ssd-16404342
https://www.digitec.ch/en/s1/product/samsung-pm9a3-3840-gb-m2-22110-ssd-16404342
https://www.digitec.ch/en/s1/product/samsung-870-evo-4000-gb-25-ssd-14599189
https://www.digitec.ch/en/s1/product/samsung-870-evo-4000-gb-25-ssd-14599189
http://www.ccb.jhu.edu/software/centrifuge/
https://www.samsung.com/semiconductor/minisite/ssd/product/consumer/980pro/
https://www.samsung.com/semiconductor/minisite/ssd/product/consumer/980pro/
https://www.micron.com/-/media/client/global/documents/products/product-flyer/3d_nand_flyer.pdf?la=en
https://www.micron.com/-/media/client/global/documents/products/product-flyer/3d_nand_flyer.pdf?la=en
https://www.micron.com/-/media/client/global/documents/products/product-flyer/3d_nand_flyer.pdf?la=en
https://www.synopsys.com/implementation-and-signoff/rtl-synthesis-test/design-compiler-graphical.html
https://www.synopsys.com/implementation-and-signoff/rtl-synthesis-test/design-compiler-graphical.html
https://www.cadence.com/en_US/home/tools/digital-design-and-signoff/soc-implementation-and-floorplanning/innovus-implementation-system.html
https://www.cadence.com/en_US/home/tools/digital-design-and-signoff/soc-implementation-and-floorplanning/innovus-implementation-system.html
https://www.cadence.com/en_US/home/tools/digital-design-and-signoff/soc-implementation-and-floorplanning/innovus-implementation-system.html
https://www.cadence.com/en_US/home/tools/digital-design-and-signoff/soc-implementation-and-floorplanning/innovus-implementation-system.html
https://github.com/CMU-SAFARI/ramulator
https://github.com/CMU-SAFARI/ramulator
https://github.com/CMU-SAFARI/MQSim
https://semiconductor.samsung.com/dram/lpddr/lpddr4/
https://semiconductor.samsung.com/dram/lpddr/lpddr4/
https://developer.amd.com/amd-uprof/
https://developer.amd.com/amd-uprof/
https://semiconductor.samsung.com/dram/module/udimm/m378a1g44ab0-cwe/
https://semiconductor.samsung.com/dram/module/udimm/m378a1g44ab0-cwe/
https://semiconductor.samsung.com/dram/module/lrdimm/m386aag40am3-cwe/
https://semiconductor.samsung.com/dram/module/lrdimm/m386aag40am3-cwe/
https://community.nanoporetech.com/requirements_documents/minion-it-reqs.pdf
https://community.nanoporetech.com/requirements_documents/minion-it-reqs.pdf

analysis based on high-performance computation. BMC Systems Biology, 2012.
[236] Xiaoquan Su, Xuetao Wang, Gongchao Jing, and Kang Ning. GPU-Meta-Storms:

computing the structure similarities among massive amount of microbial commu-
nity samples using GPU. Bioinformatics, 2013.

[237] Masahiro Yano, Hiroshi Mori, Yutaka Akiyama, Takuji Yamada, and Ken Kurokawa.
Clast: Cuda implemented large-scale alignment search tool. BMC Bioinformatics,
2014.

[238] Antonio Saavedra, Hans Lehnert, Cecilia Hernández, Gonzalo Carvajal, and Miguel
Figueroa. Mining discriminative k-mers in DNA sequences using sketches and
hardware acceleration. IEEE Access, 2020.

[239] Tianqi Zhang, Antonio González, Niema Moshiri, Rob Knight, and Tajana Rosing.
GenoMiX: Accelerated Simultaneous Analysis of Human Genomics, Microbiome
Metagenomics, and Viral Sequences. In BioCAS, 2023.

[240] Gustavo Henrique Cervi, Cecília Dias Flores, and Claudia Elizabeth Thompson.
Metagenomic Analysis: A Pathway Toward Efficiency Using High-Performance
Computing. In ICICT, 2022.

[241] Tim Dunn, Harisankar Sadasivan, JackWadden, Kush Goliya, Kuan-Yu Chen, David
Blaauw, Reetuparna Das, and Satish Narayanasamy. SquiggleFilter: An Accelerator
for Portable Virus Detection. In MICRO, 2021.

[242] Po Jui Shih, Hassaan Saadat, Sri Parameswaran, and Hasindu Gamaarachchi. Ef-
ficient real-time selective genome sequencing on resource-constrained devices.
GigaScience, 2023.

[243] Omar Ahmed, Massimiliano Rossi, Sam Kovaka, Michael C. Schatz, Travis Gagie,
Christina Boucher, and Ben Langmead. Pan-genomic matching statistics for tar-
geted nanopore sequencing. iScience, 2021.

[244] Wenqin Huangfu, Shuangchen Li, Xing Hu, and Yuan Xie. RADAR: A 3D-ReRAM
based DNA Alignment Accelerator Architecture. In DAC, 2018.

[245] S Karen Khatamifard, Zamshed Chowdhury, Nakul Pande, Meisam Razaviyayn,
Chris H Kim, and Ulya R Karpuzcu. GeNVoM: Read Mapping Near Non-Volatile
Memory. TCBB, 2021.

[246] Xue-Qi Li, Guang-Ming Tan, and Ning-Hui Sun. PIM-Align: A Processing-in-
Memory Architecture for FM-Index Search Algorithm. Journal of Computer Science
and Technology, 2021.

[247] Shaahin Angizi, Jiao Sun, Wei Zhang, and Deliang Fan. Aligns: A Processing-in-
memory Accelerator for DNA Short Read Alignment Leveraging SOT-MRAM. In
DAC, 2019.

[248] Farzaneh Zokaee, Hamid R Zarandi, and Lei Jiang. Aligner: A Process-in-memory
Architecture for Short Read Alignment in ReRAMs. IEEE Computer Architecture
Letters, 2018.

[249] Advait Madhavan, Timothy Sherwood, and Dmitri Strukov. Race Logic: A Hard-
ware Acceleration for Dynamic Programming Algorithms. SIGARCH Computer
Architecture News, 2014.

[250] Haoyu Cheng, Yong Zhang, and Yun Xu. Bitmapper2: A GPU-accelerated All-
mapper Based on The Sparse Q-gram Index. TCBB, 2018.

[251] Ernst JoachimHoutgast, Vlad-Mihai Sima, Koen Bertels, and Zaid Al-Ars. Hardware
Acceleration of BWA-MEM Genomic Short Read Mapping for Longer Read Lengths.
Computational Biology and Chemistry, 2018.

[252] Ernst JoachimHoutgast, VladMihai Sima, Koen Bertels, and Zaid AlArs. An Efficient
GPU-accelerated Implementation of Genomic Short ReadMapping with BWA-MEM.
SIGARCH Computer Architecture News, 2017.

[253] Alberto Zeni, Giulia Guidi, Marquita Ellis, Nan Ding, Marco D Santambrogio,
Steven Hofmeyr, Aydın Buluç, Leonid Oliker, and Katherine Yelick. Logan: High-
performance GPU-based X-drop Long-read Alignment. In IPDPS, 2020.

[254] Nauman Ahmed, Jonathan Lévy, Shanshan Ren, Hamid Mushtaq, Koen Bertels,
and Zaid Al-Ars. GASAL2: A GPU Accelerated Sequence Alignment Library for
High-Throughput NGS Data. BMC Bioinformatics, 2019.

[255] Takahiro Nishimura, Jacir L Bordim, Yasuaki Ito, and Koji Nakano. Accelerating the
Smith-waterman Algorithm Using Bitwise Parallel Bulk Computation Technique
on GPU. In IPDPSW, 2017.

[256] Edans Flavius de Oliveira Sandes, Guillermo Miranda, Xavier Martorell, Eduard
Ayguade, George Teodoro, and Alba Cristina Magalhaes Melo. CUDAlign 4.0:
Incremental Speculative Traceback for Exact Chromosome-wide Alignment in GPU
Clusters. TPDS, 2016.

[257] Yongchao Liu and Bertil Schmidt. GSWABE: Faster GPU-accelerated Sequence
Alignment with Optimal Alignment Retrieval for Short DNA Sequences. Concur-
rency and Computation: Practice and Experience, 2015.

[258] Yongchao Liu, Adrianto Wirawan, and Bertil Schmidt. CUDASW++ 3.0: Accelerat-
ing Smith-Waterman Protein Database Search by Coupling CPU and GPU SIMD
Instructions. BMC Bioinformatics, 2013.

[259] Yongchao Liu, Douglas L Maskell, and Bertil Schmidt. CUDASW++: Optimiz-
ing Smith-Waterman Sequence Database Searches for CUDA-enabled Graphics
Processing Units. BMC Research Notes, 2009.

[260] Yongchao Liu, Bertil Schmidt, and Douglas L Maskell. CUDASW++ 2.0: Enhanced
Smith-Waterman Protein Database Search on CUDA-enabled GPUs Based on SIMT
and Virtualized SIMD Abstractions. BMC Research Notes, 2010.

[261] Richard Wilton, Tamas Budavari, Ben Langmead, Sarah J Wheelan, Steven L
Salzberg, and Alexander S Szalay. Arioc: High-throughput Read Alignment with
GPU-accelerated Exploration of The Seed-and-extend Search Space. PeerJ, 2015.

[262] Amit Goyal, Hyuk Jung Kwon, Kichan Lee, Reena Garg, Seon Young Yun, Yoon Hee
Kim, Sunghoon Lee, and Min Seob Lee. Ultra-fast Next Generation Human Genome
Sequencing Data Processing Using DRAGENTM Bio-IT Processor for Precision
Medicine. Open Journal of Genetics, 2017.

[263] Yu-Ting Chen, Jason Cong, Zhenman Fang, Jie Lei, and Peng Wei. When Spark
Meets FPGAs: A Case Study for Next-Generation DNA Sequencing Acceleration.
In HotCloud, 2016.

[264] Peng Chen, Chao Wang, Xi Li, and Xuehai Zhou. Accelerating the Next Generation
Long Read Mapping with the FPGA-based System. TCBB, 2014.

[265] Yen-Lung Chen, Bo-Yi Chang, Chia-Hsiang Yang, and Tzi-Dar Chiueh. A High-
Throughput FPGA Accelerator for Short-Read Mapping of the Whole Human
Genome. TPDS, 2021.

[266] Daichi Fujiki, Shunhao Wu, Nathan Ozog, Kush Goliya, David Blaauw, Satish
Narayanasamy, and Reetuparna Das. SeedEx: A Genome Sequencing Accelerator
for Optimal Alignments in Subminimal Space. In MICRO, 2020.

[267] Subho Sankar Banerjee, Mohamed El-Hadedy, Jong Bin Lim, Zbigniew TKalbarczyk,
Deming Chen, Steven S Lumetta, and Ravishankar K Iyer. ASAP: Accelerated Short-
read Alignment on Programmable Hardware. TC, 2019.

[268] Xia Fei, Zou Dan, Lu Lina, Man Xin, and Zhang Chunlei. FPGASW: Accelerating
Large-scale Smith–Waterman Sequence Alignment Application with Backtracking
on FPGA Linear Systolic Array. Interdisciplinary Sciences: Computational Life
Sciences, 2018.

[269] Hasitha Muthumala Waidyasooriya and Masanori Hariyama. Hardware-
acceleration of Short-read Alignment Based on the Burrows-wheeler Transform.
TPDS, 2015.

[270] Yu-Ting Chen, Jason Cong, Jie Lei, and Peng Wei. A Novel High-throughput
Acceleration Engine for Read Alignment. In FCCM, 2015.

[271] Enzo Rucci, Carlos Garcia, Guillermo Botella, Armando De Giusti, Marcelo Naiouf,
and Manuel Prieto-Matias. SWIFOLD: Smith-Waterman Implementation on FPGA
with OpenCL for Long DNA Sequences. BMC Systems Biology, 2018.

[272] Abbas Haghi, Santiago Marco-Sola, Lluc Alvarez, Dionysios Diamantopoulos,
Christoph Hagleitner, and Miquel Moreto. An FPGA Accelerator of the Wave-
front Algorithm for Genomics Pairwise Alignment. FPL, 2021.

[273] Luyi Li, Jun Lin, and Zhongfeng Wang. PipeBSW: A Two-Stage Pipeline Structure
for Banded Smith-Waterman Algorithm on FPGA. ISVLSI, 2021.

[274] Tae Jun Ham, Yejin Lee, Seong Hoon Seo, U Gyeong Song, Jae W Lee, David
Bruns-Smith, Brendan Sweeney, Krste Asanovic, Young H Oh, and Lisa Wu Wills.
Accelerating Genomic Data Analytics With Composable Hardware Acceleration
Framework. IEEE Micro, 2021.

[275] Lisa Wu, David Bruns-Smith, Frank A. Nothaft, Qijing Huang, Sagar Karandikar,
Johnny Le, Andrew Lin, Howard Mao, Brendan Sweeney, Krste Asanović, David A.
Patterson, and Anthony D. Joseph. FPGA Accelerated Indel Realignment in the
Cloud. In HPCA, 2019.

[276] Ryan Marcus, Andreas Kipf, Alexander van Renen, Mihail Stoian, Sanchit Misra,
Alfons Kemper, Thomas Neumann, and Tim Kraska. Benchmarking learned indexes.
Proc. VLDB Endow., 2020.

[277] Arun Subramaniyan, Jack Wadden, Kush Goliya, Nathan Ozog, Xiao Wu, Satish
Narayanasamy, David Blaauw, and Reetuparna Das. Accelerated seeding for
genome sequence alignment with enumerated radix trees. In ISCA, 2021.

[278] Shengwen Liang, Ying Wang, Cheng Liu, Huawei Li, and Xiaowei Li. InS-DLA: An
In-SSD deep learning accelerator for near-data processing. In FPL, 2019.

[279] Lingxi Wu, Minxuan Zhou, Weihong Xu, Ashish Venkat, Tajana Rosing, and Kevin
Skadron. Abakus: Accelerating k-mer Counting With Storage Technology. TACO,
2023.

19

	Introduction
	Background
	Metagenomic Analysis
	Presence/absence Identification
	Abundance Estimation

	SSD Organization
	blackIn-Storage Processing

	Motivational Analysis
	Criticality of Metagenomic Analysis
	Data Movement Overheads
	Our Goal

	MegIS
	blackOverview
	Step 1: Preparing the Input Queries
	K-mer Extraction
	Sorting
	Excluding K-mers

	Step 2: Finding Candidate blackSpecies
	Intersection Finding
	Retrieving blackTaxIDs

	Step 3: Abundance Estimation
	blackMegIS FTL
	blackStorage Interface Commands
	Multi-Sample Analysis

	Evaluation Methodology
	Evaluation
	Presence/Absence Identification Analysis
	Abundance Estimation Analysis
	Multi-Sample blackUse Case
	Area and Power
	Energy

	Related Work
	Conclusion

