
RiF: Improving Read Performance of Modern SSDs
Using an On-Die Early-Retry Engine

Myoungjun Chun∗1, Jaeyong Lee∗1, Myungsuk Kim2, Jisung Park3, Jihong Kim1

1Seoul National University, 2Kyungpook National University, 3POSTECH
1{mjchun, jylee, jihong}@davinci.snu.ac.kr, 2ms.kim@knu.ac.kr, 3jisung.park@postech.ac.kr

Abstract—Modern high-performance SSDs have multiple flash
channels operating in parallel to achieve their high I/O band-
width. However, when the effective bandwidth of these flash
channels declines, the SSD’s overall bandwidth is substantially
impacted. In contemporary SSDs featuring high-density 3D
NAND flash memory, frequent invocations of a read-retry proce-
dure pose a significant challenge to fully utilizing the maximum
I/O bandwidth of a flash channel. In this paper, we propose
a novel read-retry optimization scheme, Retry-in-Flash (RiF),
which proactively minimizes the amount of time wasted in
conventional read-retry procedures. Unlike existing read-retry
solutions that focus on identifying an optimal read-reference
voltage for a sensed page, the RiF scheme focuses on determining
early on whether a read-retry will be required for the sensed
data. To know if a read-retry is needed or not at the earliest
possible time, we propose a RiF-enabled flash chip with an
on-die early-retry (ODEAR) engine. When the ODEAR engine
determines that a sensed page requires a read-retry, a read-
reference voltage is immediately adjusted and the same page is
re-read while ignoring the previously sensed page. By performing
the key steps of a read-retry procedure inside a RiF flash chip
without transferring the sensed uncorrectable page to an off-
chip controller, the RiF scheme prevents the read bandwidth of
a flash channel from being wasted due to failed read data. To
evaluate the RiF scheme, we developed a prototype RiF-enabled
flash chip and constructed a RiF-aware SSD simulator using
RiF flash chips. Our evaluation results show that the proposed
RiF scheme improves the effective SSD bandwidth by 72.1%
on average over a state-of-the-art read-retry solution at 2K P/E
cycles with negligible power and area overheads.

I. INTRODUCTION

Modern solid-state drives (SSDs) that employ high-density

3D NAND flash memory are widely used to meet the ever-

increasing I/O performance and storage capacity requirements

of data-intensive applications such as graph analytics [1]–

[4] and machine learning-based applications [5], [6]. By

parallelizing I/O operations across multiple high-speed flash

channels, each supporting multiple NAND flash dies, a modern

SSD can provide both high I/O performance and high capacity.

For example, a recent 3.84-TB SSD [7], capable of reaching

a 6.9-GB/s sequential read bandwidth, utilizes eight flash

channels, with each channel supporting a 480-GB capacity.

To facilitate parallel operation of multiple flash channels, each

channel is equipped with its own dedicated hardware engine

for supporting strong error-correcting codes (ECC) [8]–[13].

In order for high-performance SSDs to achieve their max-

imum SSD I/O bandwidth from a host side, it is important

∗Both authors contributed equally to this work.

that almost 100% of the I/O bandwidth of each flash channel

should be used for serving host I/O requests without redun-

dant or wasted channel utilization. That is, the effective I/O

bandwidth of a flash channel for host I/O requests should be

near the maximum I/O bandwidth of the flash channel. When

the effective I/O bandwidth of a flash channel deteriorates,

the overall effective SSD I/O bandwidth is directly affected.

For example, when 30% of the I/O bandwidth of a flash

channel is used for SSD-internal data movements for garbage

collection and read-disturb management [14]–[17], the overall

SSD I/O bandwidth cannot be higher than 70% of its peak I/O

bandwidth.

In contemporary high-capacity SSDs with high-density 3D

NAND flash memory, a read-retry procedure [18]–[23], which

is essential for supporting reliable reads, can be a primary

source for posing a significant challenge to fully utilizing the

maximum I/O bandwidth of a flash channel by introducing

a large amount of SSD-internal reads. Due to error-prone

characteristics of high-density 3D NAND flash memory [20],

[21], [24]–[26], even strong ECC engines (e.g., 72 bits per

1-KiB codeword [10]) of high-performance SSDs often fail to

completely eliminate uncorrectable errors from a read page. To

address this issue, when the raw bit error rate (RBER) of a read

page exceeds the ECC correction capability (i.e., the maximum

number of raw bit errors that an ECC engine can correct), a

modern SSD initiates a read-retry procedure. A conventional

read-retry procedure involves iterating through a sequence of

three read-retry steps, rs1, rs2, and rs3, until the RBER of the

read page falls below the ECC correction threshold. In step

rs1, the read-reference voltage (VREF) is adjusted; in step rs2,

the same page is re-read using the adjusted VREF; and in step

rs3, the read page is decoded by an ECC engine.

While a read-retry procedure is crucial for maintaining the

reliability of modern NAND flash memory, invoking a read-

retry procedure amplifies a single host read by (1 + NRR)

times, where NRR represents the total number of repeated

read-retry sequences. As the same page needs to be read (1

+ NRR) times, the effective read bandwidth of a flash channel

may be significantly reduced when a substantial number of

host reads necessitate the read-retry procedure. To alleviate

the performance penalty associated with read-retry procedures,

many studies [19], [22], [23], [27]–[31] have proposed various

solutions aimed at reducing NRR by selecting an appropriate

VREF value, which enables successful decoding of a read page

by the ECC engine. For example, a read-retry mitigation tech-

643

2024 IEEE International Symposium on High-Performance Computer Architecture (HPCA)

2378-203X/24/$31.00 ©2024 IEEE
DOI 10.1109/HPCA57654.2024.00056

20
24

 IE
EE

 In
te

rn
at

io
na

l S
ym

po
siu

m
 o

n
Hi

gh
-P

er
fo

rm
an

ce
 C

om
pu

te
r A

rc
hi

te
ct

ur
e

(H
PC

A)
 |

 9
79

-8
-3

50
3-

93
13

-2
/2

4/
$3

1.
00

 ©
20

24
 IE

EE
 |

 D
O

I:
10

.1
10

9/
HP

CA
57

65
4.

20
24

.0
00

56

Authorized licensed use limited to: POSTECH Library. Downloaded on May 22,2024 at 05:25:56 UTC from IEEE Xplore. Restrictions apply.

nique [23] predicts near-optimal VREF values for a previously

failed page using spare cells as error indicators. This approach

can decrease the average NRR value to 1.2.

Although existing read-retry solutions have been relatively

successful in reducing NRR, their efficiency is inherently con-

strained due to their reactive nature: The read-retry procedure

is initiated after it is determined that a read page cannot be

decoded by an off-chip ECC engine. When a read-retry pro-

cedure was rarely invoked as in 2D NAND flash memory, the

existing reactive off-chip approach was an efficient solution for

handling a read-retry request. However, we have observed that

the same approach is not adequate for modern high-density 3D

NAND flash memory because a read-retry procedure is much

more frequently invoked. (See Section III-A.)

We identified three key weaknesses of existing read-retry

solutions when they were applied in high-density 3D NAND

flash memory. First, a decision to invoke a read-retry procedure

is made by an off-chip ECC engine. Since an ECC-failed initial

page must be sent to the off-chip ECC engine to activate the

read-retry procedure, at least two reads are required even with

an ideal read-retry solution (that reduces NRR to 1), resulting in

the wasted read bandwidth of a flash channel for the first failed

read page. Second, a decision to invoke a read-retry procedure

is made too late. The read-retry decision is made reactively,

based on the number of uncorrectable raw bit errors after

the ECC decoding step (i.e., rs3). This requires the sensed

page to be transferred to the (off-chip) ECC engine. When the

sensed page cannot be corrected by the ECC engine, the read

bandwidth of the flash channel is wasted. Third, large variation

in ECC decoding latency often decreases the effective channel

bandwidth by delaying the subsequent read transfer through a

flash channel. The ECC decoding latency of the first failed

pages tends to be much longer than that of the successfully

decoded pages. During this extended decoding interval for

the failed read page, the corresponding flash channel cannot

accommodate any other requests and must remain idle, wasting

the read bandwidth of the flash channel.

In this paper, we propose a novel read-retry optimization

scheme, Retry-in-Flash (RiF), which overcomes the key limita-

tions of the existing read-retry solutions for modern 3D NAND

flash memory where an invocation of a read-retry procedure

is a common case for most reads. The key novelty of the

RiF scheme comes from 1) decoupling a decision for a read-

retry from an ECC decoding procedure and 2) making the

read-retry decision at the earliest possible time. To support

key features of the RiF scheme, we propose a RiF-enabled

flash chip with an On-Die EArly-Retry (ODEAR) engine. The

ODEAR engine consists of two main modules: the read-retry

predictor (RP) module and the read-voltage selector (RVS)

module. When a page is sensed, the RP module estimates

if the sensed page can be correctly decoded by an off-chip

ECC engine or not. When the RP module predicts that a read-

retry would be necessary, the RVS module chooses the next

VREF values. Note that both RP and RVS modules work on-

die without any assistance from an off-chip controller. By

performing a read-retry sequence within a flash die, when

a read page necessitates a read-retry, the ODEAR engine

proactively inhibits unnecessary off-chip transfer of the read

page and its long wasted ECC decoding, thus minimizing the

wasted flash channel bandwidth caused by the read-retry.

There are two key challenges in designing and implementing

the ODEAR engine. First, the RP module of the ODEAR

engine should have a sufficiently high prediction accuracy

for read-retries. For a read-retry prediction, the RP module

exploits a strong correlation between the RBER value of a

sensed page and the syndrome weight of the sensed page

in its LDPC decoding. We validated that the RP module

can achieve 98.7% prediction accuracy on the correctabil-

ity of a sensed page, effectively reducing the majority of

uncorrectable off-chip data transfers. Second, the ODEAR

engine should have no overhead on existing flash dies from

the power/performance/area (PPA) perspective. For a die-level

efficient implementation with a minimal PPA impact, the

proposed RP module focuses on predicting if a read retry is

necessary or not for a read page without decoding the read

page. We validated that the PPA impact of the RP module is

minimal from a synthesis result using a commercial EDA tool.

To evaluate the effectiveness of the RiF scheme at the SSD

level, we developed a RiF-aware SSD simulator, RiFSSD, and

compared its performance with ones with the state-of-art read-

retry solutions, Sentinel [23] and Swift-Read [32]. Our eval-

uation results using eight real-world workloads showed that

RiFSSD enhances the I/O bandwidth significantly when com-

pared with the state-of-the-art off-chip-based technique [23].

The improvements amounted to 23.8%, 47.4%, and 72.1% on

average at 0K, 1K, and 2K P/E cycles, respectively.

II. BACKGROUND

In this section, we review the basics of NAND flash memory

and explain reliability problems encountered in modern SSDs

with their mitigation techniques.

A. Overview of NAND Flash Memory

1) Basic Operations: NAND flash memory employs a

unique type of transistor, called a flash cell, which can change

its threshold voltage (VTH) by injecting or ejecting electrons

into the SiN layer. By varying the number of electrons stored in

the flash cell, the flash cell can distinguish different VTH states

which are used to represent different digital states. Read/write

operations are performed at the unit of a page (e.g., a 16-KiB

page), while erase operations are performed at the unit of a

block (e.g., a 9-MiB block) that consists of a set of pages.

Modern NAND flash memory adopts multi-level cell (MLC)

techniques that store m-bit information in a single flash cell

by using 2m distinct VTH states. Fig. 1(a) illustrates VTH

distributions for 4-state NAND flash memory, which stores

two bits per cell. The stored data in a flash cell can be read

by identifying the VTH state of the flash cells using the read-

reference voltages VRi
REF’s. For example, to read an LSB page,

the flash chip applies the VR2
REF voltage to identify if the VTH

of the flash cell is P2 state or higher.

644

Authorized licensed use limited to: POSTECH Library. Downloaded on May 22,2024 at 05:25:56 UTC from IEEE Xplore. Restrictions apply.

2) Read Errors in NAND Flash: In an ideal scenario,

the VTH of programmed flash cells remains stable, ensuring

reliable data reading. However, as the flash cells repeatedly

experience program and erase operations (called P/E cycles),

the dielectric layer known as TOX , responsible for electrically

isolating the SiN layer from the channel, is gradually damaged.

As the damage to TOX is accumulated, unexpected traps

(i.e., defects) are generated in TOX [33]. These traps make

TOX an inefficient insulator, resulting in charge leakage paths

from/to the SiN layer. Consequently, the VTH distribution

of flash cells gets widened and/or shifted, primarily due to

charge leakage occurring under various noise conditions such

as long retention time, repetitive read operations [21], [34]–

[36]. Moreover, in 3D NAND flash memory, flash cells can

experience substantial VTH shifts even in their early lifetimes

from lateral charge diffusion [37], [38]. Such VTH distortions

cause flash cells to deviate from their original VRi
REF, resulting

in read errors, as illustrated in Fig. 1(b). In recent triple-level

cell (TLC) NAND flash memory, due to the narrower margin

between VTH states, the number of bit errors easily exceeds

ECC correction capability after only a few weeks of the data

retention time. (Section III-A.)

B. Error Correction in SSDs

To ensure reliable reads of stored data from error-prone flash

cells, modern SSDs employ strong error correction schemes.

Among many error correction schemes (e.g., BCH, Reed-

Solomon), low-density parity check (LDPC) codes are widely

used for modern 3D TLC NAND flash memory because of

their high error correction capability. When a sensed page is

correctly decoded by the LDPC engine, the read operation

is completed. However, when the RBER of the sensed page

exceeds the correction capability of the LDPC engine, a read-

retry procedure is repeated until the LDPC engine successfully

decodes the sensed page, or until the sequence has been

repeated up to a predetermined maximum number of times.

1) Overview of LDPC Code: The encoding and decoding

scheme of LDPC is determined by a parity check matrix,

denoted as H, where the width is equal to the length of a

codeword and the height is equal to the number of parity

bits [39], [40]. Fig. 2 shows an example parity check matrix

H where the width and height are 8 and 4, respectively. In

each row of H, 1’s represent the bit positions of a codeword

c = (c0, c1, .., c7) that are used for computing a syndrome

vector S = (s0, s1, s2, s3), which enables the error detec-

tion/correction of codewords. In our example, the first row

#
of
ce
lls

[V]MSB LSB

#
of
ce
lls

[V]

P0
(11)

P1
(01)

P2
(10)

P3
(00)

Raw bit errors

(a) An ideal VTH distribution. (b) A distorted VTH distribution.

Fig. 1: Changes in VTH distributions under noisy conditions.

N = 8

M
=
4

Fig. 2: An example parity check matrix H with its syndrome

vector S for a codeword c.

of H represents a parity check equation, c1+c3+c4+c7 = 0,

for a codeword c. We compute s0 by performing an XOR

operation on c1, c3, c4 and c7.

The LDPC encoder generates a codeword by adding parity

bits next to the data bits so that all parity check equations are

satisfied. Therefore, if no errors occur, the Hamming weight of

syndromes (i.e.,
∑

sk) must be 0. If errors occur in a sensed

page, the LDPC decoder initially calculates the probability

of each bit originally being 0 or 1, based on syndrome bits.

Subsequently, the decoder updates each bit of the original

sensed page to the value with a higher probability. After that,

the decoder verifies the integrity of updated data by checking

whether the syndrome weight is 0 or not. If the syndrome

weight is 0, the decoder considers the page error-free and

completes the decoding process. If not, the decoder executes

the above procedure iteratively until the syndrome weight

becomes 0. As the RBER of a sensed page increases, more

iterations are required to correct the errors, which leads to an

increase in the decoding latency of LDPC [12], [13], [39],

[41]. If the data cannot be corrected after a preset maximum

number of iterations (e.g., 20), the LDPC decoder considers

the data uncorrectable and declares a decoding failure.

Figs. 3(a) and 3(b) show simulation results of the error

correction capability of the 4-KiB quasi-cyclic LDPC (QC-

LDPC [11]–[13]) decoder which is commonly adopted in

modern SSDs due to its ease of hardware implementation. As

the RBER increases, the likelihood of decoding failure as well

as the number of necessary decoding iterations generally rises.

Particularly, when the RBER surpasses 0.0085, the probability

of a decoding failure exceeds 10−1 while the number of

required iterations reaches 20.

2) VREF Adjustment Techniques: When an LDPC engine

fails to decode the sensed page, the flash controller adjusts

VRi
REF values (i.e., a read-retry procedure) so that the number

of raw bit errors from the subsequently sensed page can be

reduced below the correction capability of the LDPC engine.

To facilitate this process, flash manufacturers often employ

4 5 6 7 8 9 10
RBER ()

D
ec
od
in
g
fa
ilu
re

pr
ob
ab
ili
ty

4 5 6 7 8 9 10
RBER ()

Av
g.
#
of
it
er
at
io
ns

ECC
cap.

ECC
cap.

(a) Decoding failure probability. (b) Average no. of iterations.

Fig. 3: Error correction capability of a 4-KiB QC-LDPC.

645

Authorized licensed use limited to: POSTECH Library. Downloaded on May 22,2024 at 05:25:56 UTC from IEEE Xplore. Restrictions apply.

a predetermined sequence of VRi
REF values. When the current

VRi
REF values fail to decode the sensed page, the next VRi

REF

values in the sequence (following the current VRi
REF values) are

selected for re-sensing the failed page. As the density of flash

memory increases, due to the narrower VTH distributions, read-

retries occur more frequently and often necessitate multiple

iterations along the VRi
REF sequence, which results in a decline

in read performance. In general, the page-read latency tREAD

can be formulated as follows:

tREAD = (tR+ tDMA+ tECC)× (NRR + 1) (1)

where tR, tDMA, and tECC are the latencies of sensing the

page data, transferring the sensed data from the chip to the

SSD controller, and decoding the data with the ECC engine,

respectively. To mitigate the performance penalty associated

with multiple read-retries, it is essential to reduce NRR by

choosing better VRi
REF values that successfully correct the

previously failed page.

III. READ RETRIES IN MODERN 3D-FLASH SSDS

A. Frequency of Read-Retry Invocations

To understand how frequently a read-retry procedure is

invoked in a modern NAND flash memory, we conducted a

comprehensive study using 160 real 3D TLC NAND flash

chips under varying operating conditions. Since a read-retry

procedure is initiated when the RBER value of a page exceeds

the ECC correction capability (i.e., the RBER threshold that

an off-chip ECC engine can tolerate), we measured the RBER

value from more than 105 pages for each operating conditions,

which were randomly chosen from the 160 flash chips.

Fig. 4 shows the distributions of required retention time

until the RBER value of a page exceeds the ECC correction

capability for six P/E-cycle counts in the flash lifetime. A

box at (x, y) represents the proportion of pages in which the

RBER value of a page exceeds the RBER threshold after x-

days of retention at y P/E cycles. As shown in Fig. 4, we

observed that the RBER value of a page increases beyond

the ECC correction capability in short retention times. Under

0 P/E cycle, 200 P/E cycles, and 500 P/E cycles, a read-

retry procedure may be invoked after the data retention time

of 17 days, 14 days, and 10 days, respectively. Considering

that most commercial SSDs are required to support longer

than 4-week retention time, our results strongly indicate that

a read-retry procedure can be invoked for most read requests.

For example, the JEDEC industry specification [42] requires

that enterprise SSDs should support at least 3-month data

P/
E
cy
cl
es

100
0

200
300
500
1000

7
Retention time (days)

9 11 13 15 17 19 21 238 10 12 14 16 18 20 22 24 25 26 27 28 29 30

Proportion
0 1

Fig. 4: Distributions of required retention time until the RBER

value of a page exceeds the ECC correction capability under

different operating conditions.

retention time. Judging by the results in Fig. 4, when an SSD

experiences about 1K P/E cycles, read requests to pages after

just 8-day retention time suffer performance degradation from

read-retry procedures. Furthermore, note that due to the error-

prone nature of modern 3D NAND flash memory, the read-

retry procedure is required even in a fresh wear-out condition

(as under 0 P/E cycle). The results summarized in Fig. 4

strongly suggest that an invocation of a read-retry procedure

is a common-case event that affects most read requests.

B. Limitations of Existing Read-Retry Solutions

In order to mitigate the overhead of frequent read-retry

procedures, many prior investigations [19], [22], [23], [27]–

[31], [43], [44] have focused on reducing NRR which is

equal to the total number of failed ECC decoding of a

sensed page. Among many existing off-chip-based read-retry

optimization techniques, two recent works, Sentinel [23] and

Swift-Read [45], are quite successful in reducing NRR. For

example, Sentinel reduced the average number of failed ECC

decoding to 1.2 [23].

Sentinel [23] stores predefined bit patterns in spare cells

(called Sentinel Cells) for each page and estimates near-

optimal VREF values based on errors to the Sentinel Cells of the

page. Depending on a target page’s type (e.g., LSB/CSB/MSB

pages in TLC NAND flash memory), reading the page’s

Sentinel Cells may need to use different VREF values from

ones used for the first failed page. In such a case, a read-retry

procedure in Sentinel must perform two off-chip reads even

when it can accurately predict near-optimal VREF values. That

is, for each failed read in Sentinel, an extra off-chip read to

retrieve Sentinel Cells from the target page may be needed,

thus, increasing the number of off-chip reads up to twice the

value of NRR.

Swift-Read [32] performs a read-retry procedure via a single

NAND flash command, which performs two reads to the target

page inside the chip; the first read uses a predefined VREF

value1 for the near-optimal VREF prediction heuristic while

the second read uses optimized VREF values based on the

number of one’s in the first read. Since the number of one’s

tends to be uniformly distributed in a WL (regardless of its

location) because of a data randomization step [9], [46]–

[48] when a page is programmed, the Swift-Read scheme

can accurately determine the optimal VREF values using the

difference between the measured number of one’s over the

expected number of one’s when no bit errors exist.

In order to understand the maximum efficiency of the state-

of-art off-chip read-retry solutions (such as Sentinel and Swift-

Read) in high-performance SSDs based on modern 3D NAND

flash memory, we measured the I/O bandwidth of SSDone, an

SSD with an ideal read-retry solution (i.e., NRR = 1 for retried

reads), using an NVMe SSD simulator. (For a more detailed

description of our simulation environment, see Section VI.) To

compare the performance of SSDone with ideal performance,

1The most representative VREF value for near-optimal VREF prediction, as
determined by manufacturers after extensive profiling of NAND flash chips.

646

Authorized licensed use limited to: POSTECH Library. Downloaded on May 22,2024 at 05:25:56 UTC from IEEE Xplore. Restrictions apply.

we built SSDzero, an SSD with no retried reads. That is, SSDzero

always succeeds in its ECC decoding of a sensed page.

1) Evaluation Setup: To evaluate the I/O bandwidth of two

SSDs, SSDone and SSDzero, we extended MQSim [49], a state-

of-the-art simulator for modern SSDs, so that it can support a

read-retry procedure in its read path. In the extended MQSim,

we added two key modifications for faithfully modeling an

existing read-retry procedure. First, we modified the NAND

flash model of MQSim such that the reliability characteristics

of each simulated page follow that of real flash pages based

on the real-device characterization of 160 3D TLC NAND

flash chips. Second, when simulating a read request to a page,

the extended MQSim mimics the latency for decoding the

target page and invokes a read-retry procedure when the page’s

RBER exceeds the ECC correction capability.

To accurately reflect the characteristics of modern high-

performance SSDs, our SSD models closely follow the key

features of modern high-performance SSDs. Fig. 5 depicts the

organization of the target SSD and its key parameters. We

set the host interface for this evaluation to 8.0 GB/s [50]. To

fully support the peak bandwidth of the host interface, we

configure the target SSD with 8 channels, each supporting a

peak bandwidth of 1.2 GB/s (1.2 GB/s × 8 > 8.0 GB/s). The

channel and a channel-level ECC decoder (which is a typical

architecture of modern SSDs [49]) are shared by four 4-plane

dies.2 We set the average page-read latency of 40 μs [45] and

assume that the latency of the ECC decoder varies from 1 μs

to 20 μs depending on the target page’s RBER [12], [13].

2) Performance Evaluation: Fig. 6 shows how the I/O

bandwidth of SSDone changes across three distinct stages of

SSD life cycle (0K, 1K, and 2K P/E cycles) under four real-

world workloads [51]. (For a detailed description of the four

SS
D
co
nt
ro
lle
r

EC
C

Die#1 Die#4

Die#1 Die#4

Pl
an
e#
0

Pl
an
e#
4

Pl
an
e#
1

Pl
an
e#
3

Flash die

Peripherals

Channel BW:
1.2 GB/s

Die BW
(read):
1.6 GB/s

EC
C

Channel#1

Channel#8H
os
t

Host BW:
8.0 GB/s

Fig. 5: An overall architecture of the target high-performance

SSD.

I/
O
ba
nd
w
id
th

(M
B/
s)

0
2000
4000
6000
8000

Ali121Ali124Sys0 Sys1Ali121Ali124Sys0 Sys1Ali121Ali124Sys0 Sys1

0K P/E cycle 1K P/E cycles 2K P/E cycles

Fig. 6: A comparison of I/O bandwidth between SSDone and

SSDzero.

2When a page is read, the data path between a channel-level ECC decoder
and a flash channel is dedicated. That is, the flash controller should first
transfer the sensed (raw) page from the flash chip to the channel-level ECC
decoder (via a flash channel) in order to correct any potential bit errors of the
target page.

workloads, see Section VI-A.) We make two observations from

the results. First, SSDone is unable to prevent the substantial

performance drop caused by frequent read-retry procedures.

The I/O bandwidth of the SSD degrades by 19.4%, 34.9%, and

50.4% on average compared to when no read-retry procedure

occurs in the 0K, 1K, and 2K P/E cycles, respectively. Second,

read performance is typically a crucial requirement for most

applications, but the I/O bandwidth of SSDone experiences

more significant degradation in read-intensive workloads. For

instance, under the most read-intensive workload Ali124, the

bandwidth of SSDone is limited to at most 2831 MB/s at

2K P/E cycles, whereas SSDzero successfully sustains the

6026 MB/s I/O bandwidth demanded by the host interface.

Our evaluation results highlight the fundamental limitations

of existing off-chip read-retry solutions that have primarily

focused on minimizing NRR by efficiently determining near-

optimal VREF. Although these techniques effectively reduce

NRR to a minimum of one, they still fall short of achieving the

optimal performance of an SSD under all operating conditions.

3) Root Cause Analysis: In order to more comprehensively

understand the limitations of existing off-chip read-retry solu-

tions, we examined the execution timeline of a read request

in two SSDs, SSDzero and SSDone. This detailed examination

enables us to identify performance bottlenecks and inefficien-

cies in the read-retry procedure in SSDone. Figs. 7(a) and

7(b) illustrate the key differences in the execution timeline

to complete a 256-KiB sequential read request from a host,

which is divided into four 64-KiB multi-plane read commands,

A, B, C, and D, in SSDzero and SSDone, respectively. For easier

comparison, we assumed that a flash channel and an off-chip

ECC engine are shared by two flash dies, which consist of 4

planes (i.e., 8 planes in total). We assumed that A and B require

read-retry procedures to ensure data reliability in SSDone.

Since all planes of a flash die can operate simultaneously, each

die can complete a 64-KiB multi-plane read command (i.e.,

16-KiB pages × 4 planes) in the flash read latency tR. As a

result, when two dies of a flash channel are fully operational,

a total of 128-KiB of data can be sensed within a single tR
interval. Once two multi-plane read commands, A and B, are

completed, the 128-KiB data can be transferred to the SSD

controller (after tDMA) and decoded by the off-chip ECC

engine (after tECC). With a flash channel bandwidth of 1.2

GB/s, each die requires tDMA = 53 μs to transfer 64-KiB of

data to the SSD controller. To achieve a high I/O throughput,

the target SSD issues multi-plane read commands C and D to

the target flash dies while the previously read data is being

252 s

Chip#0:
Chip#1:
Channel:
ECC:

A C
B D

A B C D

A C
B D

A
A

C D

A’

A BB
B

’ ’

252 s + 166 s = 418 s

tR: 40 s tDMA: 53 s
tECC: 4 s

tECC: 80 s

Chip#0:
Chip#1:
Channel:
ECC:

B’

Wasted

Read failure

Fig. 7: A comparison of the execution timeline of a 256-KiB

read request in SSDzero and SSDone.

647

Authorized licensed use limited to: POSTECH Library. Downloaded on May 22,2024 at 05:25:56 UTC from IEEE Xplore. Restrictions apply.

transferred through the channel.

From our root cause study, we observed three key factors

that degrade the efficiency of existing off-chip read-retry so-

lutions. First, since an off-chip ECC engine decides to initiate

a read-retry procedure, it is not known whether a read-retry is

necessary until the read data is decoded. As a result, at least

one round of unnecessary tR, tDMA, and tECC is needed to

start the read-retry procedure. As shown in Fig. 7(b), read-retry

procedures for A and B (denoted by A’ and B’) are initiated only

after A and B were declared as decoding failures at the off-chip

ECC engine. The failed read commands, A and B, therefore,

delay the processing of subsequent read commands, C and

D, which do not require a read-retry procedure. This delay

results in an increase in the total execution time of SSDone by

166 μs over SSDzero.

Second, since both unrecoverable pages, as well as decod-

able pages (by the off-chip ECC engine), should be transferred

to the off-chip ECC engine, the effective channel bandwidth

of SSDone is significantly degraded. The effective channel

bandwidth plays a crucial role in fully utilizing the I/O

bandwidth potential of high-performance SSDs. For example,

in our target SSD shown in Fig. 5, a single flash die capable

of providing up to 1.6 GB/s (equivalent to reading 64-KiB

data per 40 μs with 16-KiB × 4 planes) could saturate a

flash channel with a 1.2 GB/s bandwidth. Unfortunately, the

existing off-chip read retry solutions are unable to prevent

uncorrectable pages from consuming the channel bandwidth.

As shown in Fig. 7(b), the two failed read commands, A and B,

result in a 33.3% reduction in the effective channel bandwidth

of SSDone, while SSDzero fully utilizes the channel bandwidth

for ECC-decodable pages.

Third, we observed that the channel bandwidth can be

less efficiently utilized when the ECC decoding latency (i.e.,

tECC) is increased. Depending on the page’s RBER value,

the decoding latency can vary significantly up to 20 times (as

shown in Fig. 3(b)). When an uncorrectable page is decoded

by an ECC engine, its tECC is much longer than that of

an ECC-decodable page. For example, in Fig. 7(b), four

unrecoverable pages, which were read by the read commands

A, take 80 μs for their failed decoding. During this period,

the channel bandwidth is completely wasted since the limited-

capacity buffer of the channel-level ECC decoder becomes

full, preventing it from accepting more raw data from the next

sensed page (e.g., C and D cannot be transferred while A is

being decoded).

IV. DESIGN OF RIF SCHEME

The limitations of existing read-retry solutions come from

inefficient data movement of uncorrectable pages to an off-

chip ECC decoder. To overcome the key weakness of the

existing solutions, we incorporate the concept of near-data

processing into the read-retry mechanism. By enabling flash

chips to decide if a sensed page can be correctable by an off-

chip ECC decoder, we can mitigate the read-retry overhead by

avoiding uncorrectable off-chip data transfers. To emphasize

that read-retry processing is supported at the flash die level

inside a flash chip, we call our proposed scheme, Retry-in-

Flash or RiF.

A. Overview of RiF Scheme

The key novelty of the RiF scheme is to employ an in-

flash retry engine (which we call the ODEAR engine) which

can 1) predict if a sensed page can be unrecoverable by an

off-chip ECC decoder and, if so, 2) adjust the read-reference

voltages and 3) re-read the same page using the adjusted VRi
REF

values. Therefore, the RiF-enabled flash die, incorporating the

ODEAR engine, does not waste the flash channel bandwidth

for moving and decoding unrecoverable pages. Figs. 8(a) and

8(b) compare the execution flow of read operations when NRR

= 1 in a conventional flash die and a RiF-enabled flash die. In

the RiF scheme, data transfer and an ECC decoding (2 and

3 in Fig. 8(a)) for an uncorrectable page can be avoided by

the on-die ODEAR engine. As shown in Fig. 8(c), therefore,

the total execution time of an SSD with RiF-enabled flash dies

can be reduced by 126 μs compared to SSDone in Fig. 7(b).

Fig. 9 shows an organizational overview of a RiF-enabled

flash die. (For simplicity, only a single plane of a flash die is

shown.) The ODEAR engine consists of two main modules:

read-retry predictor (RP) and read-voltage selector (RVS).

When a read command is issued, a corresponding page is

read and stored inside a page buffer. The RP module (which

is added to each plane) decides whether the page can be

correctable by an off-chip ECC engine (1 in Fig. 9). If the

page is estimated to be correctable, the ready flag of the

status register is set to 1 so that the controller knows the

read operation is complete (2). When the page is predicted

to be unrecoverable by the off-chip ECC engine, the RP
communicates to the RVS so that a read-retry procedure can be

initiated on the same page (3). The RVS module then searches

for the optimal voltage level and re-reads the page with the

SS
D
co
nt
.

SS
D
co
nt
.

O
D
EA
R

en
g.

Fl
as
h
di
e

Fl
as
h
di
e

A

C DA’ B’

292 s
(c)

Chip#0:
Chip#1:
Channel:
ECC:

A’ C
B B D

(b)

1

3

5

2

46

3

ECC
decoding

Data
xfer.

Page
read

(a)

1

24

’

Avoid data transfer & ECC
decoding for A, B

Fig. 8: A comparison of execution flow between (a) a con-

ventional flash die and (b) a RiF-enabled flash die with (c) an

example of the execution timeline in a RiF-enabled flash die.

SS
D
co
nt
.

Page buffer

Cell array

I/
O
in
te
rf
ac
e

St
at
us

re
g.

Retry?

RiF enabled flash die

O
D
EA
R

en
g.

1

4
3Yes5

2
No

6

ready: 1

ready: 1

Fig. 9: An organizational overview of a RiF-enabled flash die.

648

Authorized licensed use limited to: POSTECH Library. Downloaded on May 22,2024 at 05:25:56 UTC from IEEE Xplore. Restrictions apply.

estimated VRi
REF values (4). After the re-read operation, the

ready flag is set to 1. (5). The SSD controller then initiates a

data transfer operation (6). Note that the re-read page does not

go through the RP module but is directly sent to the off-chip

ECC engine.

B. Read-Retry Prediction by RP Module

A straightforward way to implement a RiF-enabled flash

die is to integrate an LDPC decoder within the flash die itself.

This approach ensures that only error-free data is transferred

out after a read-retry procedure is completed within the flash

die, thus causing no impact on the channel utilization from a

read-retry. However, placing a complex LDPC decoder within

a flash die is not practical. As an alternative solution, we place

only the RP module, an efficient error-correctability predictor,

within the flash die. RP only estimates the RBER of a page

that is used to predict the need for a read-retry. As shown in

Fig. 3(a), the error correction capability of an LDPC decoder

is predetermined. Therefore, if the RBER of a page were to

be known in advance, RP could decide whether a read-retry

is needed or not without a complex LDPC decoding process.

For an efficient read-retry prediction, RP exploits the posi-

tive correlation between the RBER and syndrome weight (i.e.,∑
sk) of a read page. As explained in Section II-B, each

syndrome sk is obtained by performing XOR operations on

a subset of the read data. Let Vk denote a set of bits used

in computing sk. When no errors are present within Vk, the

resulting syndrome sk is zero. However, as the RBER of the

page increases, it is more likely that bits in Vk experience

errors, thus leading to a higher probability of sk being to one.

Consequently, the syndrome weight, which is the sum of all the

syndromes, increases with an increasing RBER value. The RP
module takes a simple heuristic in predicting if a sensed page

can be successfully decoded by an ECC decoder by using the

computed syndrome weight of the page. When the syndrome

weight of a page is larger than the correctability threshold

value ρs, RP predicts that the page cannot be successfully de-

coded by an off-chip ECC engine, thus requiring an invocation

of an in-flash read-retry procedure.

The key challenge of designing the RP module, therefore,

is how to choose ρs. In deciding ρs, we exploit a strong corre-

lation between RBER values and syndrome weights. When a

sensed page is unrecoverable by an off-chip ECC decoder,

its RBER value becomes larger than the error correction

capability of the ECC decoder. In the current RP heuristic,

we assume that an RBER value of a sensed page and its

0
1000
2000
3000
4000
5000
6000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Av
g.
sy
nd
ro
m
e

w
ei
gh
t

RBER (x)

Correction capability
= 0.0085

= 3830

Fig. 10: A correlation analysis between RBER and syndrome

weight.

syndrome weight have a 1:1 relationship, so when we know a

syndrome weight, we can estimate its RBER value. Therefore,

when the syndrome weight of a sensed page is larger than ρs,

RP decides that the sensed page is unrecoverable by an off-

chip ECC decoder. Fig. 10 shows how strongly an RBER value

and its syndrome weight are related in QC-LDPC. Since the

correction capability of the QC-LDPC was set to 0.0085 (see

Fig. 3), we set ρs to the corresponding syndrome weight for

the RBER value of 0.0085.

In order to evaluate the adequacy of RP as a read-retry

predictor, we performed a validation study of RP for pages

with feasible RBER values. In this paper, we assumed that

programmed flash blocks are refreshed every month, so we

evaluated the accuracy of RP over the range of RBERs for

pages with retention times up to one month.3 For each RBER

value, we generated 105 test pages with the same RBER value

and compared the retry prediction result from RP with the real

read-retry result from the QC-LDPC decoder. Fig. 11 shows

the summary of our validation results. RP achieves a high

prediction accuracy of 99.1% on average when RBER values

are above the correction capability, which indicates that RP
can correctly detect the majority of uncorrectable pages.

When an RBER value is close to the correction capability

of an ECC decoder, however, we noticed that the prediction

accuracy of RP gets degraded. For example, when the RBER

value of a page is equal to the correction capability, the

accuracy of RP drops to 50.3%. Consequently, when the

RBER of a page is close to the correction capability, RP makes

two types of mispredictions. First, RP may incorrectly iden-

tify uncorrectable data as correctable, thereby preventing the

complete elimination of uncorrectable data movements. Such

uncorrectable data transfers to an off-chip ECC decoder,

however, are negligible because the RBER range for poor RP
accuracy is less than 2% of the overall RBER range under the

1-month data retention requirement. Second, RP may initiate

unnecessary read-retry operations on pages that are actually

correctable. The key concern for this case is whether the re-

read page with an adjusted VRi
REF is not recoverable by an

off-chip ECC decoder. However, the RBER of the page is

lowered when a read-retry is performed [23], [32], [46], so it

is unlikely that the re-read page is unrecoverable by the ECC

decoder.

0%
20%
40%
60%
80%
100%

3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33

%
of
co
rr
ec
t

pr
ed
ic
ti
on

by
RP

RBER (x)

99.1% prediction accuracy for
uncorrectable pages

Corr. cap.
= 0.0085

Fig. 11: Validation results of RP over LDPC decoder.

3Modern SSDs typically refresh stored data periodically for reliability
management [52], [53].

649

Authorized licensed use limited to: POSTECH Library. Downloaded on May 22,2024 at 05:25:56 UTC from IEEE Xplore. Restrictions apply.

C. Read Voltage Selector

Upon predicting that a page is uncorrectable, RP initiates

RVS to choose better VRi
REF values for the page. In order to

adjust the VRi
REF values, a RiF-enabled flash die incorporates

Swift-Read [32], which finds near-optimal VRi
REF values with-

out requiring controller assistance. Unlike the conventional

usage of issuing a Swift-Read command after an ECC de-

coding failure, in RiF, the RVS module internally issues a

Swift-Read command for uncorrectable pages. After a Swift-

read is issued by RVS, the RiF-enabled flash die finds the

near-optimal voltage values for the uncorrectable page and re-

reads the page with those values. After the page is re-read, the

sensed page does not go through the RP module again. This

decision is largely dependent on the efficiency of a Swift-Read

command, which claims to locate near optimal VRi
REF values.4

V. IMPLEMENTATION OF RIF-ENABLED FLASH

Although the calculation of a syndrome weight is less

complex than a complete LDPC decoding process, its efficient

implementation at the flash die level remains challenging.

First, computing a syndrome weight introduces additional read

latency. To compute a syndrome weight, data inside a page

buffer should be read and processed by RP after completing

a page sensing operation. Considering a latency for a page

sensing operation takes 40 μs and a latency for reading a 16-

KiB page from the page buffer takes 10 μs [43], the read

latency increases by at least about 25%. Second, computing a

syndrome weight requires complex bitwise operations which

are not straightforward to implement within a flash die. As

shown in Fig. 2, the bits needed to compute a syndrome are

irregularly distributed over an entire codeword. Consequently,

a direct implementation of a syndrome computation typically

operates in a bitwise serial manner, thus making it quite

challenging to efficiently implement in hardware.

To address the above implementation challenges, we employ

two optimizations at two levels of RP implementation. First,

to minimize the latency of computing a syndrome weight, we

reduce the number of syndromes computed (Section V-A).

Second, to optimize an efficiency of a syndrome computa-

tion, we reorganize a codeword layout in a hardware-friendly

fashion (Section V-B).

A. Approximate Syndrome Computation

1) Chunk-based Prediction: The first approximation used

in our RP implementation is based on our key observation that

the errors within the same page are uniformly (or randomly)

distributed. Fig. 12 shows RBER values of chunks of the

same size within the same 16-KiB page, where the chunk

sizes are 4-KiB, 2-KiB, and 1-KiB.5 For each chunk size,

we compare a ratio between the maximum bit error rate

4When the efficiency of a Swift-Read command is not as good as reported
in [32], it is straightforward to modify for RP to predict the read-retry of the
second sensed page.

5Fig. 12 summarizes our characterization results using more than 105

pages from 160 TLC NAND flash chips to cope with multiple kinds process
variation of flash memory [54] in a statistically meaningful manner, under
various operating conditions.

Retention time (days)
0 1 3 7 142128M

ax
im
um

%
of

/

0%
5%
10%
15%
20%

0 1 3 7 142128 0 1 3 7 142128

0K P/E cycle 1K P/E cycles 2K P/E cycles
4 KiB chunk 2 KiB chunk 1 KiB chunk

Fig. 12: RBER similarity among fixed-size chunks within the

same 16-KiB page.

RBERmax and the minimum bit error rate RBERmin among

chunks. As shown in Fig. 12, RBER similarity exists between

chunks for all chunk size configurations. For example, we

observed that the maximum difference between RBERmax

and RBERmin for the 4-KiB chunk size is only up to 4.5%,

indicating that only marginal error characteristic variations

exist among chunks within a page. This is because the data

randomization technique [55], [56] of modern flash memory,

which is common practice to reduce the probability of worst-

case data patterns, randomly distributes the cell’s VTH states

within a page regardless of the original data values to store. In

addition, cells on the same page tend to have similar reliability

characteristics due to the strong process similarities [19], [23],

[57]. By exploiting a strong intra-page RBER similarity, RP
checks only a single chunk corresponding to the size of a

single codeword within a page, thus efficiently reducing the

number of syndromes computed.

Despite the observed RBER similarity between chunks, the

results in Fig. 12 also indicate the importance of sufficient

sample size in a chunk in order to achieve practicable pre-

diction accuracy. As the chunk size decreases, the ratio of

RBERmax to RBERmin increases. For example, a relatively

high RBER variance was observed for a chunk size of 1-KiB

(up to 13.5%). Although a smaller chunk size would reduce

RP’s overhead even further, we chose a 4-KiB chunk size for

RP design to minimize misprediction overhead while retaining

sufficient performance benefits.

2) Syndrome Pruning: To further reduce the overhead of

computing a syndrome, we employ syndrome pruning, which

skips the computation of redundant syndromes. Fig. 13 depicts

a parity check matrix of QC-LDPC. In QC-LDPC, the parity

check matrix H is a r by c block matrix composed of t by

t sub-matrices (Q(Ci,j)) [39], [40], [58]. Each sub-matrix is

a circulant matrix that can be obtained by cyclically shifting

the identity matrix to the right, where the shifting coefficient

is denoted as Ci,j . For example, Q(1) can be obtained by

shifting the identity matrix by 1. As shown, there are r times t
syndromes in QC-LDPC. Among them, we utilize only the first

=

t

t

N = c x t

M
=
r
x
t

H =
() ()
() () ()

() () ()

()

Fig. 13: A parity check matrix of QC-LDPC.

650

Authorized licensed use limited to: POSTECH Library. Downloaded on May 22,2024 at 05:25:56 UTC from IEEE Xplore. Restrictions apply.

t syndromes (i.e., sk (0 ≤ k ≤ t−1)) for prediction purposes.6

These syndromes are explicitly represented by the first row

of a block matrix denoted as H in Fig. 13 (i.e., Q(C1,1) to

Q(C1,c)). The rationale for using only the first t syndromes for

prediction comes from the fact that the remaining syndromes

(i.e., sk (t ≤ k ≤ rt − 1)) merely serve to reconfigure

the bit arrangements of the first t syndromes. By using only

the first t syndromes for prediction, the number of syndrome

computations can be reduced by a factor of r. Moreover, this

approach does not significantly compromise the effectiveness

of the prediction, as the remaining syndromes do not provide

substantial new information.

Fig. 14 shows the evaluation result of RP when two pro-

posed approximation schemes are employed. Although the

accuracy drops slightly, it still maintains a high prediction

accuracy of 98.7%.

B. On-Die Syndrome Computation

In order to calculate a syndrome, a set of bits that are

represented by a row of parity check matrix H should be

XORed, as explained in Section II-B. However, as shown

in Fig. 13, H of QC-LDPC consists of identity matrices

shifted by coefficients (Ci,j). Consequently, the bits needed to

compute a syndrome are distributed irregularly across different

segments constituting the codeword. Therefore, computing the

syndrome inside the flash die should involve complex bitwise

processing, which increases the area and latency of RP.

To facilitate the on-die syndrome computation, we propose

a codeword rearrangement scheme that makes H a hardware-

friendly structure. Fig. 15 shows how rearranging the code-

word simplifies H.7 Since the row length of H is c times

t, the codeword can be divided into c segments. Here, the

segment i corresponds to Q(C1,i), which is the identity matrix

shifted to the right by C1,i, so if the segment i is rotated to

the left by C1,i, then Q(C1,i) is logically equivalent to the

identity matrix. For example, if the segment 1 is rotated to the

left by C1,1, the corresponding sub-matrix Q(C1,1) becomes

(logically) equal to Q(0) (i.e., identity matrix). The proposed

codeword rearrangement scheme rotates all segments to the

0%
20%
40%
60%
80%
100%

3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33

%
of
co
rr
ec
t

pr
ed
ic
ti
on

by
RP

RBER (x)

98.7% prediction accuracy w/
approximations

Corr. cap.
= 0.0085

w/o approximations
w/ approximations

Fig. 14: A comparison of RP prediction accuracy with two

approximation techniques.

6The parity check matrix H of QC-LDPC used in this paper is a 4 by 36
block matrix composed of 1024 by 1024 submatrices. Therefore, we compute
only 1024 syndromes out of 4096 syndromes.

7In Fig. 15, only the first row of the block matrix H is shown. This
is because the rest of the syndromes are not computed when the syndrome
pruning technique is applied.

Seg. #1
(org.)

Seg. #2
(org.)

Seg. #c
(org.)

Seg. #1
(rotated)

Seg. #2
(rotated)

Seg. #c
(rotated)

Rotate

by C1,i

Codeword (org.) Codeword (proposed)
11

1

1
1

Parity check matrix (org.) Parity check matrix (proposed)

1111
1111

1111
1111

1111
1111

11
1

11
1

1

1
1

11
1

() () () (0) (0) (0)

Fig. 15: A simplified parity check matrix when the proposed

codeword layout is employed.

left by corresponding shifting coefficients. By doing so, the

parity check matrix is simplified to c identity sub-matrices,

reducing the syndrome computation to a simple process of

counting the number of 1’s resulting from the XOR operations

executed between segments.

The proposed codeword rearrangement scheme is only

applied when making predictions inside the flash die while

LDPC decoding should be performed on the original codeword

layout. To support an off-chip LDPC decoding as well as

an on-die syndrome computation, the flash controller changes

the layout of the codeword before sending data (i.e., after

ECC encoding) to the flash die for writing and restores the

layout when it receives data (i.e., before ECC decoding)

from the flash die for reading. Note that bitwise rotation

is an essential behavior of QC-LDPC, so the LDPC engine

is already equipped with several barrel shifters for rotating

segments [59]–[61].

Fig. 16 shows an overall organization of RP, assuming the

page buffer is organized in 128-bit words [62]. Although syn-

drome computation is straightforward, a naive implementation

of RP may incur significant overhead due to the large segment

size (e.g., 1024-bit). For efficient implementation, RP divides

the entire syndrome into 128-bit units and accumulates the

weight in turn. To calculate the first 128 syndromes, for ex-

ample, RP fetches the first 128-bit of data from each segment

into 128-bit segment reg (1 in Fig. 16) while fetched data

is sequentially XORed and stored in 128-bit syndrome reg

(2). After a series of XORs to compute the 128 syndromes,

the weight of the syndromes is counted and accumulated in

the accumulator (3). RP repeats the above process until the

total syndrome weight is accumulated, and then completes the

read-retry prediction by comparing the syndrome weight to

ρs (4). Because each stage of the syndrome computation is

fully pipelined (i.e., the latency of 2 and 3 overlaps with

1), the time required to retrieve a chunk from the page buffer

determines the overall latency of a read-retry prediction. That

Pa
ge
bu
ffe
r

Ce
ll
ar
ra
y

128b

Dout

XO
R

W
ei
gh
tc
ou
nt
er

Ac
cu
m
ul
at
or

Co
m
pa
ra
to
r

Syndrome
weight

Pr
ed
ic
ti
on

re
su
lt

module

Fig. 16: An overall organization of RP.

651

Authorized licensed use limited to: POSTECH Library. Downloaded on May 22,2024 at 05:25:56 UTC from IEEE Xplore. Restrictions apply.

is, Assuming a 4-KiB chunk, it takes about 2.5 μs [43].

VI. EVALUATIONS

A. Experimental Setup

We evaluated the effectiveness of the RiF scheme on im-

proving system I/O performance using MQSim-E [63], a state-

of-the-art SSD simulator used for evaluating modern enterprise

SSDs. To accurately simulate the error characteristics of mod-

ern SSDs, we extended the NAND flash model of MQSim-

E to match real-device characterization results described in

Section III. Each block in MQSim-E was configured to match

the device characterization results of one of the real tested

blocks. For example, each block in MQSim-E is modeled

with a lookup table that contains RBER values at different

P/E-cycle counts, retention ages, and block read counts from

the device characterization results of a randomly chosen test

block. When a page is read in the extended MQSim-E, the

RBER value of the target page is determined from the RBER

lookup table of the block (where the page belongs to) based on

the current operating parameters of the block (e.g., a P/E cycle

count and a data retention time). Based on the estimated RBER

value, the extended MQSim-E decides whether the target page

requires a read-retry procedure. When a read-retry procedure

is required for the page, the estimated RBER value is used

in deciding tECC (which varies over the RBER value of the

page). To simulate the RP module of a RiF-enabled flash chip,

a probability-based model is used using the RP prediction

accuracy function (given as a function of an RBER value)

as shown in Fig. 14.

Table I summarizes our evaluated SSD configurations. We

assumed a 2-TiB SSD with 8 channels, 4 dies per channel, and

4 planes per die. Each plane consisted of 1,888 blocks, and

each block had 576 16-KiB pages. tR, tPROG, and tBERS are

set to 40 μs, 400 μs, and 3.5 ms, respectively, for our simulated

NAND flash chip, based on the real NAND flash chips used

in our characterization study8. We set the host interface to

support a maximum bandwidth of 8.0 GB/s as specified by the

PCI Express (PCIe) 4.0 standard [50]. The I/O bandwidth of

a flash channel supports 1.2 Gb/s peak bandwidth (i.e., tDMA
= 13 μs for a 16-KiB page). With 8 channels, therefore, our

simulated SSD fully supports the peak bandwidth of the host

interface (i.e., 1.2 GB/s × 8 > 8.0 GB/s). We assumed a 4-

KiB QC-LDPC engine with a correction capability of 0.0085,

and tECC varied from 1 μs to 20 μs depending on the target

TABLE I: Evaluated SSD configurations.

Configuration 2-TiB total capacity; 8 channels; 4 dies/channel; 4 planes/die;
1888 blocks/plane; 576 pages/block

Latencies (μs) tR = 40; tPROG = 400; tBERS = 3500;
tDMA = 13; tECC = 1 to 20; tPRED = 2.5

Bandwidth 8.0 GB/s external I/O bandwidth (PCIe 4.0, 4-lane);
1.2 GB/s channel I/O bandwidth

ECC engine 4-KiB LDPC with 0.0085 correction capability

8The timing parameters tPROG and tBERS define the latency for the
program and erase operations, respectively.

page’s RBER. When the target page is successfully decoded

following VREF adjustment, we assume tECC to be 1 μs

because the RBER value of a sensed page with near-optimal

VREF is significantly less than the ECC capability [46]. The

latency of the RP module, tPRED, is set to 2.5 μs.

We conducted our experiments using eight workloads ob-

tained from two I/O trace sets: AliCloud traces [51] and Systor

traces [64]. The AliCloud traces consist of 1,000 block I/O

traces collected from a cloud block storage system over one

month. On the other hand, the Systor traces comprise 44 block

I/O traces gathered from a cloud block storage system over a

period of 28 days. From these trace sets, we carefully selected

eight representative traces. First, we categorized the I/O traces

based on their read ratios. From each category of I/O traces

with similar read ratios, we selected the ones with the highest

total I/O size. In the case of the Systor traces, we found that

all traces had similar read ratios and I/O intensities, so we

only included the first two traces (Sys0, Sys1).

Table II summarized the key I/O characteristics of eight

traces. The read ratio indicates the proportion of read requests

among all I/O requests while the cold read ratio represents the

fraction of read requests to pages that have not been updated at

all during workload simulation. For example, in Ali124, 96%

of all I/O requests are read requests. Among the read requests,

79% are read to pages that are not updated at all during the

workload simulation. When a read request is a cold read, a

read retry is more likely because of its long retention time. In

general, the higher the cold read ratio, the higher the frequency

of read retries.

To evaluate the effectiveness of the proposed RiF scheme,

we built RiFSSD that employs RiF-enabled flash chips. Fur-

thermore, to compare the performance of the RiF scheme with

existing state-of-the-art read mitigation techniques, we built

four more SSDs, SENC, SWR, SWR+, and RPSSD. SENC and

SWR are SSDs based on two state-of-art techniques, Sentinel

and Swift-Read (as described in Section III-B), respectively.

To provide a more competitive comparison, we have included

SWR+ and RPSSD. SWR+ is an SSD that combines SWR
with an advanced VREF tracking scheme [19]. By proactively

employing pre-optimized VREF values, SWR+ complements

the reactive nature of SWR, thereby decreasing the frequency

of read-retry procedures. RPSSD is an alternative RiF scheme

design that can be implemented if applying architectural

modifications to an existing flash chip is challenging. It incor-

porates an RP module at the SSD controller level to terminate

prolonged ECC decoding when a sensed page is predicted to

be uncorrectable. To evaluate RiFSSD in the scenario where

the existing off-chip read-retry solutions work best, we assume

TABLE II: Key I/O characteristics of eight I/O traces.

Workload Read Cold read Workload Read Cold read
ratio ratio ratio ratio

Ali2 0.27 0.50 Ali124 0.96 0.79
Ali46 0.34 0.75 Ali295 0.42 0.73
Ali81 0.43 0.74 Sys0 0.70 0.82
Ali121 0.92 0.70 Sys1 0.72 0.83

652

Authorized licensed use limited to: POSTECH Library. Downloaded on May 22,2024 at 05:25:56 UTC from IEEE Xplore. Restrictions apply.

1.0
0.5
0.0N

or
m
al
iz
ed

I/
O
ba
nd
w
id
th

1.5
2.0

0K P/E cycle 1K P/E cycles 2K P/E cycles
2.5

Ali2 Ali46 Ali81 Ali121Ali124 Sys0 Geom.
mean

Sys1Ali295 Ali2 Ali46 Ali81 Ali121Ali124 Sys0 Geom.
mean

Sys1Ali295 Ali2 Ali46 Ali81 Ali121Ali124 Sys0 Geom.
mean

Sys1Ali295

Fig. 17: Comparisons of I/O bandwidth for eight workloads under three different P/E cycles.

that all SSDs can identify the near-optimal VREF value after

one read-retry loop.

B. Performance Evaluation

Fig. 17 compares the I/O bandwidth of four SSD con-

figurations, normalized to SENC, under different operating

conditions. (Note that SSDzero represents a hypothetical SSD

that experiences no read retry.) When compared to state-of-the-

art read-retry optimization techniques, RiFSSD outperforms

SENC, SWR and SWR+ by significantly improving the average

I/O bandwidth at all three P/E cycles. For example, RiFSSD
improves the I/O bandwidth at 2K P/E cycles by 72.1%, 61.2%

and 50.0% over SENC, SWR, and SWR+, respectively. Fur-

thermore, the average I/O bandwidth of RiFSSD is comparable

to that of the ideal SSDzero, with the maximum difference of

1.8% at 2K P/E cycles.

To better understand the efficiency of RiFSSD, we compared

how flash channels were used in each SSD using two work-

loads with the highest read ratio, Ali121 and Ali124. As shown

in Fig. 18, the usage of a flash channel is categorized into

four types: IDLE indicates when the flash channel is not used,

COR and UNCOR represent a time interval when correctable

and uncorrectable pages are transferred to an off-chip ECC

decoder, respectively, and ECCWAIT is a special case of

IDLE when the flash channel is idle because of on-going

ECC decoding operations. As shown in Fig. 18, SENC, SWR,

and SWR+ waste a considerable share of the flash channel

bandwidth while 1) transferring uncorrectable pages to an off-

chip ECC decoder and 2) taking a long latency to decode

uncorrectable pages. For example, in Ali124, 54.4% of the flash

channel bandwidth was wasted in UNCOR and ECCWAIT at

2K P/E cycles in SWR because of a large number of cold reads

that require read-retry procedures. While RPSSD effectively

reduces wasted channel bandwidth from ECCWAIT, it still

suffers unnecessary data transfers of uncorrectable pages to

IDLE COR UNCOR ECCWAIT

0.0
0.2
0.4
0.6
0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

Ch
an
ne
lu
sa
ge
ra
ti
o

1K0K 2K 1K0K 2K

(a) Ali121 (b) Ali124

Fig. 18: Channel usage breakdown results in Ali121 and Ali124.

the off-chip RP module. On the other hand, RiFSSD consumed

nearly all of the channel bandwidth under COR. In Ali121,

for example, at 2K P/E cycles (when read-retries are most

frequent), RiFSSD and RPSSD wasted 1.8% and 19.9% of

the flash channel bandwidth, respectively, under UNCOR.

To understand the benefit of reduced read retries on SSD-

level read latencies, we compared five SSD configurations

using their SSD-level read latencies. As shown in Fig. 19, the

proposed RiF scheme was effective at reducing the read tail

latency, a crucial performance factor for many data-intensive

applications [65]–[71]. For example, in RiFSSD, the 99.99-th

percentile tail latency in Ali124 was reduced by 91.8%, 82.6%,

and 56.3% at 2K P/E cycles over SENC, SWR, and SWR+,

respectively.

C. Overhead Evaluation

We estimated the area/power overhead of the RP module

from a synthesis result using Synopsys Design Compiler.

Although RiF-enabled flash dies necessitate the use of both

the RVS and RP modules, one of our baseline SSDs, SWR,

already employs hardware logic such as the RVS module to

enable Swift-Read commands at the flash die level. Therefore,

in this evaluation, we focus on the overhead of the RP module.

In the 130 nm process at a 100 MHz operating frequency,

the total area and power consumption of the RP module

were only 0.012 mm2 and 1.28 mW, respectively. Compared

to the typical area of modern flash dies (e.g., 101 mm2

in [72]), the space overhead of the RP module seems to

be negligible. Although the RP module consumes slightly

more power/energy when reading a correctable page because

of the additional RP module, the RiF scheme is effective

in minimizing the overall energy consumption of a modern

SSD with frequent read retries. For example, when a read

retry procedure is needed, the RiF scheme reduces the energy

consumption of a read request by about 907 nJ [73] (which

is needed for an unrecoverable page transfer) while the RP

Read latency (ms)

0.0
0.2
0.4
0.6
0.8
1.0

0.30.0 0.6 0.9 1.2 0.30.0 0.6 0.9 1.2 0.30.0 0.6 0.9 1.2

0K P/E cycle 1K P/E cycles 2K P/E cycles

Fig. 19: Cumulative distributions of read latencies in Ali124.

653

Authorized licensed use limited to: POSTECH Library. Downloaded on May 22,2024 at 05:25:56 UTC from IEEE Xplore. Restrictions apply.

module can increase the energy consumption by about 3.2 nJ

only for its read-retry prediction.

VII. RELATED WORK

To our knowledge, this work is the first to predict a read

failure inside NAND flash memory, which significantly miti-

gates the performance overhead due to read-retry in modern

SSDs. We provide a brief overview of closely related work

that aims to 1) reduce the read-retry overhead and 2) leverage

the computation capability of NAND flash chips (i.e., in-flash
processing) to improve the performance of storage systems.

Read-Retry Optimization. Due to the significant perfor-

mance impact of read-retry in modern SSDs, a large body

of prior work has attempted to optimize the read-retry pro-

cedure [20], [21], [23], [27]–[29], [31], [32], [46], [74]–[77].

Many existing read-retry optimizations aim to reduce NRR by

accurately determining near-optimal VREF values based on 1)

sophisticated VTH models of NAND flash memory [20], [31],

[74]–[76] or 2) pre-optimized VREF values that have enabled

successful decoding of previously-read pages [19], [27]–[29].

However, their effectiveness is limited in 3D TLC and QLC

NAND flash memory due to the rapid VTH shift and complex

error characteristics of modern NAND flash memory.

More recent studies have proposed to use the error patterns

of certain (sampled) flash cells of the target page for accurate

prediction of near-optimal VREF values [23], [32], [77]. While

these techniques successfully reduce NRR to around one itera-

tion (e.g., 1.2 iteration on average [23]), they cannot be applied

proactively to all reads due to the additional page read latency

introduced by reading sample data. In contrast, RiF integrates

proactive error prediction and VREF adjustment at the flash-die

level, effectively minimizing the read-retry overhead without

introducing significant additional latency.

In-Flash Processing. Several works [62], [78]–[80] have

demonstrated the effectiveness of in-flash processing at

mitigating internal data-movement bottleneck in modern

SSDs. Existing in-flash processing techniques offload sim-

ple (lightweight) computations to NAND flash dies, which

significantly reduces off-chip data movement by transferring

only the computation results from NAND flash dies. Flash-

Cosmos [80] and ParaBit [78] enable a NAND flash die to

perform bulk bitwise operations internally and transfer only

the results to the flash controller through the flash channel.

PiF [79] implements a computation unit inside a NAND flash

die for simple filtering tasks (e.g., a pattern matching function),

which avoids transferring unnecessary data in target pages

to the flash controller, thereby significantly reducing SSD-

internal data movement. While existing techniques primarily

focus on enhancing the performance of specific applications, to

our knowledge, RiF is the first to leverage in-flash processing

to improve I/O performance in general storage systems.

VIII. CONCLUSIONS

We have presented the RiF scheme, a novel read-retry

solution that minimizes unnecessary data transfers between

a flash chip and an off-chip ECC decoder during read-retry

procedures, thus significantly reducing the overhead of read-

retries in modern high-performance SSDs. The key observation

behind the proposed RiF scheme is that whether a read retry

is needed or not can be accurately predicted without decoding

a sensed page by an off-chip ECC decoder. We proposed

an accurate but efficient syndrome weight-based read-retry

predictor which can be implemented inside a flash die as a part

of the ODEAR engine that supports an efficient read voltage

selector as well. Our experimental results using a RiF-aware

SSD, RiFSSD, show that RiFSSD can improve the effective

SSD I/O bandwidth by 72.1% on average over existing state-

of-art read-retry solutions at 2K P/E cycles. Furthermore,

thanks to a highly-optimized implementation of the ODEAR

engine, a RiF-aware flash chip incurs negligible power and

area overheads over existing flash chips.

ACKNOWLEDGMENTS

We thank the anonymous reviewers of HPCA 2024 for

their valuable comments that greatly improved our paper. This

work was supported by MOTIE (Ministry of Trade, Industry

& Energy) (1415181081) and KSRC (Korea Semiconductor

Research Consortium) (20019402). Jisung Park was supported

by the National Research Foundation of Korea (RS-2023-

00283799). The ICT at Seoul National University provided

research facilities for this study. The EDA tool was supported

by the IC Design Education Center (IDEC), Korea. (Corre-

sponding author: Jihong Kim.)

REFERENCES

[1] Da Zheng, Disa Mhembere, Randal Burns, Joshua Vogelstein, Carey E.
Priebe, and Alexander S. Szalay. FlashGraph: processing billion-node
graphs on an array of commodity SSDs. In FAST, 2015.

[2] Hang Liu and H. Howie Huang. Graphene: Fine-grained IO Management
for Graph Computing. In FAST, 2017.

[3] Nima Elyasi, Changho Choi, and Anand Sivasubramaniam. Large-Scale
Graph Processing on Emerging Storage Devices. In FAST, 2019.

[4] Kiran K. Matam, Gunjae Koo, Haipeng Zha, Hung-Wei Tseng, and
Murali Annavaram. GraphSSD: Graph Semantics Aware SSD. In ISCA,
2019.

[5] Hyeokjun Choe, Seil Lee, Hyunha Nam, Seongsik Park, Seijoon Kim,
Eui-Young Chung, and Sungroh Yoon. Near-data Processing for Ma-
chine Learning. arXiv, 2016.

[6] Shengwen Liang, Ying Wang, Youyou Lu, Zhe Yang, Huawei Li, and
Xiaowei Li. Cognitive SSD: A Deep Learning Engine for In-Storage
Data Retrieval. In USENIX ATC, 2016.

[7] Sasmung. PM9A3, 2023. https://www.samsung.com/semiconductor/
global.semi.static/[S210809] PM9A3 SSD Whitepaper.pdf.

[8] NETINT. Codensity D400, 2019. https://www.netint.cn/wp-
content/uploads/2019/08/NETINT Codensity D400 SSD Product
Brief 19PB003.pdf.

[9] Yu Cai, Saugata Ghose, Erich F. Haratsch, Yixin Luo, and Onur Mutlu.
Error Characterization, Mitigation, and Recovery in Flash-Memory-
Based Solid-State Drives. Proceedings of the IEEE, 2017.

[10] Micron. Micron 3D NAND Flash Memory, 2016.

[11] Jiangli Zhu. High-Throughput LDPC Solution for Reliable and High
Performance SSD. In Flash Memory Summit, 2016.

[12] Shiuan-Hao Kuo. Novel 4K Error Correcting Code for QLC NAND. In
Flash Memory Summit, 2017.

[13] Shiuan-Hao Kuo. Ultra MMI : an LDPC decoder that doubles throughput
at end-of-life. In Flash Memory Summit, 2019.

[14] Jiho Kim, Myoungsoo Jung, and John Kim. Decoupled SSD: Reducing
Data Movement on NAND-Based Flash SSD. IEEE CAL, 2021.

654

Authorized licensed use limited to: POSTECH Library. Downloaded on May 22,2024 at 05:25:56 UTC from IEEE Xplore. Restrictions apply.

[15] Narges Shahidi, Mahmut T. Kandemir, Mohammad Arjomand, Chita R.
Das, Myoungsoo Jung, and Anand Sivasubramaniam. Exploring the
Potentials of Parallel Garbage Collection in SSDs for Enterprise Storage
Systems. In SC, 2016.

[16] Fei Wu, Jiaona Zhou, Shunzhuo Wang, Yajuan Du, Chengmo Yang,
and Changsheng Xie. FastGC: Accelerate Garbage Collection via an
Efficient Copyback-Based Data Migration in SSDs. In DAC, 2018.

[17] Duwon Hong, Myungsuk Kim, Jisung Park, Myoungsoo Jung, and
Jihong Kim. Improving SSD Performance Using Adaptive Restricted-
Copyback Operations. In NVMSA, 2019.

[18] Yu Cai, Saugata Ghose, Erich F. Haratsch, Yixin Luo, and Onur Mutlu.
Errors in Flash-Memory-Based Solid-State Drives: Analysis, Mitigation,
and Recovery. arXiv, 2017.

[19] Youngseop Shim, Myungsuk Kim, Myoungjun Chun, Jisung Park,
Yoona Kim, and Jihong Kim. Exploiting Process Similarity of 3D Flash
Memory for High Performance SSDs. In MICRO, 2019.

[20] Yixin Luo, Saugata Ghose, Yu Cai, Erich F. Haratsch, and Onur Mutlu.
HeatWatch: Improving 3D NAND Flash Memory Device Reliability by
Exploiting Self-recovery and Temperature Awareness. In HPCA, 2018.

[21] Yixin Luo, Saugata Ghose, Yu Cai, Erich F. Haratsch, and Onur Mutlu.
Improving 3D NAND Flash Memory Lifetime by Tolerating Early
Retention Loss and Process Variation. In SIGMETRICS, 2018.

[22] Jisung Park, Myungsuk Kim, Myoungjun Chun, Lois Orosa, Jihong
Kim, and Onur Mutlu. Optimizing Read-Retry Latency of NAND
Flash Memory by Fully Exploiting Advanced Features of Modern SSDs.
arXiv, 2020.

[23] Qiao Li, Min Ye, Yufei Cui, Liang Shi, Xiaoqiang Li, Tei-Wei Kuo,
and Chun Jason Xue. Shaving Retries with Sentinels for Fast Read over
High-Density 3D Flash. In MICRO, 2020.

[24] Nikolaos Papandreou, Haralampos Pozidis, Thomas Parnell, Nikolas
Ioannou, Roman Pletka, Sasa Tomic, Patrick Breen, Gary Tressler, Aaron
Fry, and Timothy Fisher. Characterization and Analysis of Bit Errors in
3D TLC NAND Flash Memory. In IRPS, 2019.

[25] Qiao Li, Liang Shi, Yufei Cui, and Chun Jason Xue. Exploiting
Asymmetric Errors for LDPC Decoding Optimization on 3D NAND
Flash Memory. IEEE TC, 2019.

[26] Yachen Kong, Meng Zhang, Xuepeng Zhan, Rui Cao, and Jiezhi Chen.
Retention Correlated Read Disturb Errors in 3-D Charge Trap NAND
Flash Memory: Observations, Analysis, and Solutions. IEEE TCAD,
2020.

[27] Borja Peleato, Rajiv Agarwal, John Cioffi, Minghai Qin, and Paul H
Siegel. Towards Minimizing Read Time for NAND Flash. In GLOBE-
COM, 2012.

[28] Nikolaos Papandreou, Thomas Parnell, Haralampos Pozidis, Thomas
Mittelholzer, Evangelos Eleftheriou, Charles Camp, Thomas Griffin,
Gary Tressler, and Andrew Walls. Using Adaptive Read Voltage
Thresholds to Enhance the Reliability of MLC NAND Flash Memory
Systems. In GLSVLSI, 2014.

[29] Yu Cai, Yixin Luo, Erich F Haratsch, Ken Mai, and Onur Mutlu. Data
Retention in MLC NAND Flash Memory: Characterization, Optimiza-
tion, and Recovery. In HPCA, 2015.

[30] Meng Zhang, Fei Wu, Qin Yu, Weihua Liu, Yifan Wang, and Chang-
sheng Xie. Exploiting Error Characteristic to Optimize Read Voltage
for 3-D NAND Flash Memory. IEEE TED, 2020.

[31] Nikolaos Papandreou, Nikolas Loannou, Thomas Parnell, Roman Pletka,
Milos Stanisavljevic, Radu Stoica, Sasa Tomic, and Haralampos Pozidis.
Reliability of 3D NAND Flash Memory with a Focus on Read Voltage
Calibration from a System Aspect. In NVMTS, 2020.

[32] Wanik Cho, Jongseok Jung, Jongwoo Kim, Junghoon Ham, Sangkyu
Lee, Yujong Noh, Dauni Kim, Wanseob Lee, Kayoung Cho, Kwanho
Kim, Heejoo Lee, Sooyeol Chai, Eunwoo Jo, Hanna Cho, Jong-Seok
Kim, Chankeun Kwon, Cheolioona Park, Hveonsu Nam, Haeun Won,
Taeho Kim, Kyeonghwan Park, Sanghoon Oh, Jinhyun Ban, Junyoung
Park, Jaehyeon Shin, Taisik Shin, Junseo Jang, Jiseong Mun, Jehyun
Choi, Hyunseung Choi, Suna-Wook Choi, Wonsun Park, Dongkvu Yoon,
Minsu Kim, Junvoun Lim, Chiwook An, Hyunyoung Shirr, Haesoon
Oh, Haechan Park, Sungbo Shim, Hwang Huh, Honasok Choi, Seungpil
Lee, Jaesuna Sim, Kichana Gwon, Jumsoo Kim, Woopyo Jeong, Jungdal
Choi, and Kyo-Won Jin. A 1-Tb, 4b/Cell, 176-Stacked-WL 3D-NAND
Flash Memory with Improved Read Latency and a 14.8 Gb/mm2
Density. In ISSCC, 2022.

[33] R. Micheloni, A. Marelli, and K. Eshghi. Inside Solid State Drives
(SSDs). Springer, 2013.

[34] Yu Cai, Saugata Ghose, Yixin Luo, Ken Mai, Onur Mutlu, and Erich F.
Haratsch. Vulnerabilities in MLC NAND Flash Memory Programming:
Experimental Analysis, Exploits, and Mitigation Techniques. In HPCA,
2017.

[35] Yu Cai, Onur Mutlu, Erich F. Haratsch, and Ken Mai. Program
Interference in MLC NAND Flash Memory: Characterization, Modeling,
and Mitigation. In ICCD, 2013.

[36] Yu Cai, Yixin Luo, Saugata Ghose, and Onur Mutlu. Read Disturb
Errors in MLC NAND Flash Memory: Characterization, Mitigation, and
Recovery. In DSN, 2015.

[37] Jaeyong Lee, Myungsunk Kim, Wonil Choi, Sanggu Lee, and Jihong
Kim. TailCut: Improving Performance and Lifetime of SSDs Using
Pattern-Aware State Encoding. In DAC, 2022.

[38] Kyoji Mizoguchi, Shohei Kotaki, Yoshiaki Deguchi, and Ken Takeuchi.
Lateral Charge Migration Suppression of 3D-NAND Flash By Vth
Nearing for Near Data Computing. In IEDM, 2017.

[39] Osso Vahabzadeh. ECC for NAND Flash. In Flash Memory Summit,
2017.

[40] Ned Varnica. LDPC Decoding: VLSI Architectures and Implementations
(Module 1). In Flash Memory Summit, 2013.

[41] Yuluen Wang. Ultra High Throughput LDPC Schemes for SSD. In
Flash Memory Summit, 2016.

[42] JEDEC. JESD312, 2022. https://www.jedec.org/document search?
search api views fulltext=jesd312.

[43] Chulbum Kim, Doo-Hyun Kim, Woopyo Jeong, Hyun-Jin Kim, Il Han
Park, Hyun-Wook Park, JongHoon Lee, JiYoon Park, Yang-Lo Ahn,
Ji Young Lee, Seung-Bum Kim, Hyunjun Yoon, Jae Doeg Yu, Nayoung
Choi, NaHyun Kim, Hwajun Jang, JongHoon Park, Seunghwan Song,
YongHa Park, Jinbae Bang, Sanggi Hong, Youngdon Choi, Moo-Sung
Kim, Hyunggon Kim, Pansuk Kwak, Jeong-Don Ihm, Dae Seok Byeon,
Jin-Yub Lee, Ki-Tae Park, and Kye-Hyun Kyung. A 512-Gb 3-b/Cell
64-Stacked WL 3-D-NAND Flash Memory. IEEE JSSC, 53(1):124–133,
2018.

[44] Yingge Li, Guojun Han, Sanwei Huang, Chang Liu, Meng Zhang, and
Fei Wu. Exploiting Metadata to Estimate Read Reference Voltage for
3-D NAND Flash Memory. IEEE TCE, 2023.

[45] Jiho Cho, D. Chris Kang, Jongyeol Park, Sang-Wan Nam, Jung-Ho
Song, Bong-Kil Jung, Jaedoeg Lyu, Hogil Lee, Won-Tae Kim, Hongsoo
Jeon, Sunghoon Kim, In-Mo Kim, Jae-Ick Son, Kyoungtae Kang, Sang-
Won Shim, JongChul Park, Eungsuk Lee, Kyung-Min Kang, Sang-Won
Park, Jaeyun Lee, Seung Hyun Moon, Pansuk Kwak, ByungHoon Jeong,
Cheon An Lee, Kisung Kim, Junyoung Ko, Tae-Hong Kwon, Junha Lee,
Yohan Lee, Chaehoon Kim, Myeong-Woo Lee, Jeong-yun Yun, HoJun
Lee, Yonghyuk Choi, Sanggi Hong, JongHoon Park, Yoonsung Shin,
Hojoon Kim, Hansol Kim, Chiweon Yoon, Dae Seok Byeon, Seungjae
Lee, Jin-Yub Lee, and Jaihyuk Song. 30.3 A 512Gb 3b/Cell 7 th-
Generation 3D-NAND Flash Memory with 184MB/s Write Throughput
and 2.0 Gb/s Interface. In ISSCC, 2021.

[46] Jisung Park, Myungsuk Kim, Myoungjun Chun, Lois Orosa, Jihong
Kim, and Onur Mutlu. Reducing Solid-State Drive Read Latency by
Optimizing Read-Retry. In ASPLOS, 2021.

[47] Yu Cai, Saugata Ghose, Erich F Haratsch, Yixin Luo, and Onur
Mutlu. Reliability Issues in Flash-Memory-Based Solid-State Drives:
Experimental Analysis, Mitigation, Recovery. Inside Solid State Drives
(SSDs), 2018.

[48] Jaewon Cha and Sungho Kang. Data Randomization Scheme for
Endurance Enhancement and Interference Mitigation of Multilevel Flash
Memory Devices. Etri Journal, 2013.

[49] Arash Tavakkol, Juan Gómez-Luna, Mohammad Sadrosadati, Saugata
Ghose, and Onur Mutlu. MQSim: A Framework for Enabling Realistic
Studies of Modern Multi-Queue SSD Devices. In FAST, 2018.

[50] PCI-SIG. PCI Express M.2 Specification Revision 4.0, Version 1.1,
2022. https://pcisig.com/specifications.

[51] Jinhong Li, Qiuping Wang, Patrick P. C. Lee, and Chao Shi. An In-Depth
Analysis of Cloud Block Storage Workloads in Large-Scale Production.
In IISWC, 2020.

[52] Yejia Di, Liang Shi, Congming Gao, Qiao Li, Chun Jason Xue, and
Kaijie Wu. Minimizing Retention Induced Refresh Through Exploiting
Process Variation of Flash Memory. IEEE TC, 2019.

[53] Yu Cai, Gulay Yalcin, Onur Mutlu, Erich F. Haratsch, Adrian Cristal,
Osman S. Unsal, and Ken Mai. Flash Correct-and-Refresh: Retention-
Aware Error Management for Increased Flash Memory Lifetime. In
ICCD, 2012.

655

Authorized licensed use limited to: POSTECH Library. Downloaded on May 22,2024 at 05:25:56 UTC from IEEE Xplore. Restrictions apply.

[54] Yuqian Pan, Haichun Zhang, Mingyang Gong, and Zhenglin Liu.
Process-variation effects on 3d tlc flash reliability: Characterization and
mitigation scheme. In 2020 IEEE 20th International Conference on
Software Quality, Reliability and Security (QRS), 2020.

[55] Michele Favalli, Cristian Zambelli, Alessia Marelli, Rino Micheloni, and
Piero Olivo. A scalable bidimensional randomization scheme for tlc 3d
nand flash memories. Micromachines, 2021.

[56] Chulbum Kim, Jinho Ryu, Taesung Lee, Hyunggon Kim, Jaewoo Lim,
Jaeyong Jeong, Seonghwan Seo, Hongsoo Jeon, Bokeun Kim, Inyoul
Lee, Dooseop Lee, Pansuk Kwak, Seongsoon Cho, Yongsik Yim,
Changhyun Cho, Woopyo Jeong, Kwangil Park, Jin-Man Han, Duheon
Song, Kyehyun Kyung, Young-Ho Lim, and Young-Hyun Jun. A 21 nm
High Performance 64 Gb MLC NAND Flash Memory With 400 MB/s
Asynchronous Toggle DDR Interface. IEEE JSSC, 2012.

[57] Jui-Nan Yen, Yao-Ching Hsieh, Cheng-Yu Chen, Tseng-Yi Chen, Chia-
Lin Yang, Hsiang-Yun Cheng, and Yixin Luo. Efficient Bad Block
Management with Cluster Similarity. In HPCA, 2022.

[58] Youngjoo Lee, Jaehwan Jung, and Incheol Park. Energy-Scalable 4KB
LDPC Decoding Architecture for NAND-Flash-Based Storage Systems.
IEICE Transactions on Electrons, 2016.

[59] Kiran Gunnam. LDPC Decoding: VLSI Architectures and Implementa-
tions (Module 2). In Flash Memory Summit, 2013.

[60] Li-Wei Liu, Yen-Chin Liao, and Hsie-Chia Chang. Up-gdbf: A 19.3
gbps error floor free 4kb ldpc decoder for nand flash applications. IEEE
Open Journal of Circuits and Systems, 2022.

[61] Thien T. Nguyen-Ly, Tushar Gupta, Manuel Pezzin, Valentin Savin,
David Declercq, and Sorin Cotofana. Flexible, cost-efficient, high-
throughput architecture for layered ldpc decoders with fully-parallel
processing units. In 2016 Euromicro Conference on Digital System
Design (DSD), 2016.

[62] Han-Wen Hu, Wei-Chen Wang, Yuan-Hao Chang, Yung-Chun Lee, Bo-
Rong Lin, Huai-Mu Wang, Yen-Po Lin, Yu-Ming Huang, Chong-Ying
Lee, Tzu-Hsiang Su, et al. ICE: An Intelligent Cognition Engine with
3D NAND-based In-Memory Computing for Vector Similarity Search
Acceleration. In MICRO, 2022.

[63] Dusol Lee, Duwon Hong, Wonil Choi, and Jihong Kim. MQSim-E: An
Enterprise SSD Simulator. IEEE CAL, 2022.

[64] Chunghan Lee, Tatsuo Kumano, Tatsuma Matsuki, Hiroshi Endo, Naoto
Fukumoto, and Mariko Sugawara. Understanding Storage Traffic Char-
acteristics on Enterprise Virtual Desktop Infrastructure. In SYSTOR,
2017.

[65] Zhang, Jie and Kwon, Miryeong and Gouk, Donghyun and Koh,
Sungjoon and Lee, Changlim and Alian, Mohammad and Chun, My-
oungjun and Kandemir, Mahmut Taylan and Kim, Nam Sung and Kim,
Jihong and Jung, Myoungsoo. FlashShare: Punching Through Server
Storage Stack from Kernel to Firmware for Ultra-Low Latency SSDs.
In OSDI, 2018.

[66] Shiqin Yan, Huaicheng Li, Mingzhe Hao, Michael Hao Tong, Swami-
nathan Sundararaman, Andrew A Chien, and Haryadi S Gunawi. Tiny-
Tail Flash: Near-Perfect Elimination of Garbage Collection Tail Laten-
cies in NAND SSDs. In FAST, 2017.

[67] Wonkyung Kang and Sungjoo Yoo. Q-Value Prediction for Rein-
forcement Learning Assisted Garbage Collection to Reduce Long Tail
Latency in SSD. IEEE TCAD, 2020.

[68] Timothy Zhu, Michael A Kozuch, and Mor Harchol-Balter. Workload-
compactor: Reducing Datacenter Cost While Providing Tail Latency
SLO Guarantees. In SoCC, 2017.

[69] Heiner Litz, Javier Gonzalez, Ana Klimovic, and Christos Kozyrakis.
RAIL: Predictable, Low Tail Latency for NVMe Flash. ACM TOS,
2022.

[70] Zhibing Sha, Jun Li, Lihao Song, Jiewen Tang, Min Huang, Zhigang
Cai, Lianju Qian, Jianwei Liao, and Zhiming Liu. Low I/O Intensity-
Aware Partial GC Scheduling to Reduce Long-Tail Latency in SSDs.
ACM TACO, 2021.

[71] Ana Klimovic, Heiner Litz, and Christos Kozyrakis. Reflex: Remote
flash ≈ local flash. In ASPLOS, 2017.

[72] Dongku Kang, Minsu Kim, Su Chang Jeon, Wontaeck Jung, Jooyong
Park, Gyosoo Choo, Dong-kyo Shim, Anil Kavala, Seung-Bum Kim,
Kyung-Min Kang, et al. 13.4 A 512Gb 3-bit/Cell 3D 6 th-Generation
V-NAND flash memory with 82MB/s write throughput and 1.2 Gb/s
interface. In ISSCC, 2019.

[73] Hyun-Jin Kim, Youngdon Choi, Jangwoo Lee, Jindo Byun, Seungwoo
Yu, Daehoon Na, Jungjune Park, Kwangwon Kim, Anil Kavala, Young-
min Jo, Changbum Kim, Sunghoon Kim, Nahyun Kim, Jaehwan Kim,

Bongkil Jung, Yena Lee, Chanjin Park, Hansung Joo, Kisung Kim,
Yunhee Choi, Pansuk Kwak, Hyeonggon Kim, Jeong-Don Ihm, Dae-
Seok Byeon, Jin-Yub Lee, Ki-Tae Park, and Kye-Hyun Kyung. A 1.2V
1.33Gb/s/pin 8Tb NAND Flash Memory Multi-Chip Package Employing
F-chip for Low Power and High Performance Storage Applications. In
VLSI, 2017.

[74] Kin-Chu Ho, Po-Chao Fang, Hsiang-Pang Li, Cheng-Yuan Michael
Wang, and Hsie-Chia Chang. A 45nm 6b/cell Charge-Trapping Flash
Memory Using LDPC-Based ECC and Drift-Immune Soft-Sensing En-
gine. In ISSCC, 2013.

[75] Frederic Sala, Ryan Gabrys, and Lara Dolecek. Dynamic Threshold
Schemes for Multi-Level Non-Volatile Memories. IEEE TC, 2013.

[76] Zhengqin Fan, Guofa Cai, Guojun Han, Wenjie Liu, and Yi Fang. Cell-
State-Distribution-Assisted Threshold Voltage Detector for NAND Flash
Memory. IEEE COMML, 2019.

[77] Qiao Li, Min Ye, Yufei Cui, Liang Shi, Xiaoqiang Li, and Chun Jason
Xue. Sentinel Cells Enabled Fast Read for NAND Flash. In HotStorage,
2019.

[78] Congming Gao, Xin Xin, Youyou Lu, Youtao Zhang, Jun Yang, and
Jiwu Shu. Parabit: Processing Parallel Bitwise Operations in NAND
Flash Memory Based SSDs. In MICRO, 2021.

[79] Myoungjun Chun, Jaeyong Lee, Sanggu Lee, Myungsuk Kim, and
Jihong Kim. PiF: In-Flash Acceleration for Data-Intensive Applications.
In HotStorage, 2022.

[80] Jisung Park, Roknoddin Azizi, Geraldo F. Oliveira, Mohammad Sadrosa-
dati, Rakesh Nadig, David Novo, Juan Gómez-Luna, Myungsuk Kim,
and Onur Mutlu. Flash-Cosmos: In-Flash Bulk Bitwise Operations Using
Inherent Computation Capability of NAND Flash Memory. In MICRO,
2022.

656

Authorized licensed use limited to: POSTECH Library. Downloaded on May 22,2024 at 05:25:56 UTC from IEEE Xplore. Restrictions apply.

